Association with Monoclonal Antibody Promotes Intracellular Delivery of Lycopene

Incubation of B10.MLM cells, a cell line of alveolar macrophages, with lycopene, a carotenoid, leads to an increase of lycopene content in their microsomal fraction. That increase was higher and developed faster when the cells were incubated with immune complexes formed by lycopene and mAb 6B9 (L–6B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monoclonal antibodies in immunodiagnosis and immunotherapy 2018-06, Vol.37 (3), p.147-152
Hauptverfasser: Petyaev, Ivan M., Zigangirova, Naylia A., Tsibezov, Valeriy V., Morgunova, Elena Y., Bondareva, Natalia E., Kyle, Nigel H., Bashmakov, Yuriy K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Incubation of B10.MLM cells, a cell line of alveolar macrophages, with lycopene, a carotenoid, leads to an increase of lycopene content in their microsomal fraction. That increase was higher and developed faster when the cells were incubated with immune complexes formed by lycopene and mAb 6B9 (L–6B9 mAb), a monoclonal hapten-specific antibody raised against lycopene, as compared with dimethyl sulfoxide (DMSO)-dissolved lycopene (DMSO-L). Moreover, incubation of B10.MLM cells with L–6B9 mAb complexes was accompanied by more efficient accumulation of lipid droplets in the cultured cells and more significant inhibition of mRNA for 3-hydroxy-3-methylglutaryl-coenzyme (HMG-CoA) reductase, a rate-limiting enzyme of cholesterol biosynthesis known to be targeted by lycopene. Additionally, there was a better inhibition of Chlamydia trachomatis infection in B10.MLM cells infected with the pathogen and incubated thereafter with L–6B9 mAb complexes as compared with DMSO-L. Altogether, the results suggest that association with monoclonal antibody promotes intracellular delivery of lycopene in cultured cells possibly through Fc-receptor mediated uptake.
ISSN:2167-9436
2167-9436
DOI:10.1089/mab.2018.0010