Relationship between Elemental Carbon, Total Carbon, and Diesel Particulate Matter in Several Underground Metal/Non-metal Mines
Elemental carbon (EC) is currently used as a surrogate for diesel particulate matter (DPM) in underground mines since it can be accurately measured at low concentrations and diesels are the only source of submicrometer EC in underground mines. A disadvantage of using EC as a surrogate for DPM is tha...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2007-02, Vol.41 (3), p.710-716 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Elemental carbon (EC) is currently used as a surrogate for diesel particulate matter (DPM) in underground mines since it can be accurately measured at low concentrations and diesels are the only source of submicrometer EC in underground mines. A disadvantage of using EC as a surrogate for DPM is that the fraction of EC in DPM is a function of various engine parameters and fuel formulations, etc. In order to evaluate how EC predicts DPM in the underground mining atmosphere, measurements of total carbon (TC; representing over 80% of the DPM) and EC were taken away from potential interferences in four underground metal/non-metal mines during actual production. In a controlled atmosphere, DPM mass, TC, and EC measurements were also collected while several different types of vehicles simulated production with and without different types of control technologies. When diesel particulate filters (DPFs) were not used, both studies showed that EC could be used to predict DPM mass or TC. The variability of the data started to increase at TC concentrations below 230 μg/m3 and was high (>±20%) at TC concentrations below 160 μg/m3, probably due to the problem with sampling organic carbon (OC) at these concentrations. It was also discovered that when certain DPFs were used, the relationship between DPM and EC changed at lower DPM concentrations. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es061556a |