Assessing the likely value of gravity and drawdown measurements to constrain estimates of hydraulic conductivity and specific yield during unconfined aquifer testing

Pumping of an unconfined aquifer can cause local desaturation detectable with high‐resolution gravimetry. A previous study showed that signal‐to‐noise ratios could be predicted for gravity measurements based on a hydrologic model. We show that although changes should be detectable with gravimeters,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2007-12, Vol.43 (12), p.n/a
Hauptverfasser: Blainey, J.B, Ferre, T.P.A, Cordova, J.T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pumping of an unconfined aquifer can cause local desaturation detectable with high‐resolution gravimetry. A previous study showed that signal‐to‐noise ratios could be predicted for gravity measurements based on a hydrologic model. We show that although changes should be detectable with gravimeters, estimations of hydraulic conductivity and specific yield based on gravity data alone are likely to be unacceptably inaccurate and imprecise. In contrast, a transect of low‐quality drawdown data alone resulted in accurate estimates of hydraulic conductivity and inaccurate and imprecise estimates of specific yield. Combined use of drawdown and gravity data, or use of high‐quality drawdown data alone, resulted in unbiased and precise estimates of both parameters. This study is an example of the value of a staged assessment regarding the likely significance of a new measurement method or monitoring scenario before collecting field data.
ISSN:0043-1397
1944-7973
DOI:10.1029/2006WR005678