The UWO contribution to the NIST aerodynamic database for wind loads on low buildings: Part 3. Internal pressures
Wind tunnel tests of generic low buildings have been conducted at the University of Western Ontario for contribution to the National Institute on Standards and Technology (NIST) aerodynamic database. Part 1 provided the archiving format and basic aerodynamic data. In Part 2, the data of external pre...
Gespeichert in:
Veröffentlicht in: | Journal of wind engineering and industrial aerodynamics 2007-08, Vol.95 (8), p.755-779 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wind tunnel tests of generic low buildings have been conducted at the University of Western Ontario for contribution to the National Institute on Standards and Technology (NIST) aerodynamic database. Part 1 provided the archiving format and basic aerodynamic data. In Part 2, the data of external pressures were compared with existing wind load provisions for low buildings. This paper, Part 3, deals with an investigation of wind-induced internal pressures of low-rise buildings with realistic dominant opening and leakage scenarios. Data from one building model with four different opening sizes were compared with numerical simulations. The existing theory, using the unsteady orifice discharge equation, works well for the building models used in this study, given the external pressures near the openings, irrespective of shifts of wind direction and upstream terrain. Numerical simulations can capture the temporal variations of the internal pressure fluctuations, as well as mean values.
The internal pressure fluctuations for the building with leakage (nominally sealed building) are attenuated as they pass through the openings, while mean values are consistent with spatially averaged external pressures. Internal pressure resonance occurs for the dominant opening (3.3% open ratio) with building leakage. Effects of oblique wind angles on internal pressure dynamics are not significant, at least for the openings in the centre of wall, as is the case herein. Peak internal pressures occur for a wind direction normal to the wall with a dominant opening. Measured internal pressure coefficients are compared with current wind load provisions. Some peak values were found to exceed the recommended design values for the dominant windward wall opening cases. |
---|---|
ISSN: | 0167-6105 1872-8197 |
DOI: | 10.1016/j.jweia.2007.01.007 |