Electroactivity of Aptamer at Soft Microinterface Arrays
The electrochemical behavior of a synthetic oligonucleotide, thrombin-binding aptamer (TBA, 15-mer), was explored at a liquid-organogel microinterface array. TBA did not display any response when only background electrolytes were present in both phases. On the basis of literature reports that surfac...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2018-07, Vol.90 (14), p.8470-8477 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The electrochemical behavior of a synthetic oligonucleotide, thrombin-binding aptamer (TBA, 15-mer), was explored at a liquid-organogel microinterface array. TBA did not display any response when only background electrolytes were present in both phases. On the basis of literature reports that surfactants can influence nucleic acid detection, the response in the presence of cetyltrimethylammonium (CTA+) was examined. With both TBA and CTA+ in the aqueous phase, the transfer current for CTA+ was diminished, signifying the interaction of CTA+ with TBA. Experiments with CTA+ spiked into the organic phase revealed a sharp current peak, consistent with the interfacial formation of a CTA+–TBA complex. However, use of CTA+ as the organic phase electrolyte cation, as the salt with tetrakis(4-chlorophenyl)borate, greatly improved the response to TBA. In this case, a distinctive peak response (at ca. −0.25 V) was attributed to the transfer of CTA+ across the soft interface to complex with aqueous phase TBA. Employing this process as a detection step enabled a detection limit of 0.11 μM TBA (by cyclic voltammetry). Furthermore, the presence of magnesium cations at physiological concentration resulted in the disappearance of the TBA response because of Mg2+-induced folding of TBA. Also, the current response of TBA was decreased by the addition of thrombin, indicating TBA interacted with this binding partner. Finally, the interfacial surfactant–aptamer interaction was explored in a synthetic urine matrix that afforded a detection limit of 0.29 μM TBA. These results suggest that aptamer-binding interactions can be monitored by electrochemistry at aqueous–organic interfaces and open up a new possibility for detection in aptamer-binding assays. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.8b01172 |