(Guanidine)copper Complex-Catalyzed Enantioselective Dynamic Kinetic Allylic Alkynylation under Biphasic Condition
Highly enantioselective allylic alkynylation of racemic bromides under biphasic condition is furnished in this report. This approach employs functionalized terminal alkynes as pro-nucleophiles and provides 6- and 7-membered cyclic 1,4-enynes with high yields and excellent enantioselectivities (up to...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2018-07, Vol.140 (27), p.8448-8455 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highly enantioselective allylic alkynylation of racemic bromides under biphasic condition is furnished in this report. This approach employs functionalized terminal alkynes as pro-nucleophiles and provides 6- and 7-membered cyclic 1,4-enynes with high yields and excellent enantioselectivities (up to 96% ee) under mild conditions. Enantioretentive derivatizations highlight the synthetic utility of this transformation. Cold-spray ionization mass spectrometry (CSI-MS) and X-ray crystallography were used to identify some catalytic intermediates, which include guanidinium cuprate ion pairs and a copper–alkynide complex. A linear correlation between the enantiopurity of the catalyst and reaction product indicates the presence of a copper complex bearing a single guanidine ligand at the enantio-determining step. Further experimental and computational studies supported that the alkynylation of allylic bromide underwent an anti-SN2′ pathway catalyzed by nucleophilic cuprate species. Moreover, metal-assisted racemization of allylic bromide allowed the reaction to proceed in a dynamic kinetic fashion to afford the major enantiomer in high yield. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.7b12806 |