Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1
FLR1 gene, encoding a multidrug resistance (MDR) transporter of the major facilitator superfamily (MFS) was found to confer resistance to the fungicide mancozeb in Saccharomyces cerevisiae. This agrochemical has been linked to the development of Parkinson disease and cancer. Yeast response to mancoz...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2008-03, Vol.367 (2), p.249-255 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | FLR1 gene, encoding a multidrug resistance (MDR) transporter of the major facilitator superfamily (MFS) was found to confer resistance to the fungicide mancozeb in Saccharomyces cerevisiae. This agrochemical has been linked to the development of Parkinson disease and cancer. Yeast response to mancozeb was proved to involve the strong activation of FLR1 transcription (20-fold) during the fungicide-induced growth latency. This activation of FLR1 transcription is fully dependent on Yap1p and is reduced (by 50%) in the absence of Rpn4p, Yrr1p or Pdr3p. A model for the coordinate action over FLR1 transcription activation, in response to mancozeb, of these transcription factors that mediate oxidative stress response (Yap1p), proteasome gene expression (Rpn4p), and pleiotropic drug resistance (Pdr3p and Yrr1p), is proposed. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2007.12.056 |