Insulin-loaded alginate microspheres for oral delivery – Effect of polysaccharide reinforcement on physicochemical properties and release profile
Oral administration of insulin requires protein protection from degradation in the gastric environment and its absorption improvement in the intestinal tract. To achieve this objective several types of microspheres composed of alginate, chitosan and dextran sulphate have been prepared by ionotropic...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2007-07, Vol.69 (4), p.725-731 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oral administration of insulin requires protein protection from degradation in the gastric environment and its absorption improvement in the intestinal tract. To achieve this objective several types of microspheres composed of alginate, chitosan and dextran sulphate have been prepared by ionotropic gelation. Parameters such as the mean particle size, swelling behaviour, insulin encapsulation efficiency, loading capacity and release profiles in simulated gastric and intestinal fluids have been compared for the systems developed. In this study, attempts have been made to increase insulin protection and to improve its release from microspheres by reinforcing the alginate matrix with chitosan and/or dextran sulphate. Dextran sulphate was able to avoid insulin release at pH 1.2, protecting the protein from the acidic environment and reducing the total insulin released at pH 6.8. This effect was explained by an interaction between the permanent negatively charged groups of dextran sulphate and insulin molecules. |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2007.02.012 |