FoxO1-mediated autophagy plays an important role in the neuroprotective effects of hydrogen in a rat model of vascular dementia
•HRW attenuates learning and memory impairments in a rat model of VD.•HRW attenuates the neuronal apoptosis and autophagy levels in VD rats.•FoxO1-mediated autophagy is partially involved in the protective effects of HRW in VD rats.•Excessive autophagy and apoptosis are both activated 4 weeks after...
Gespeichert in:
Veröffentlicht in: | Behavioural brain research 2019-01, Vol.356, p.98-106 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •HRW attenuates learning and memory impairments in a rat model of VD.•HRW attenuates the neuronal apoptosis and autophagy levels in VD rats.•FoxO1-mediated autophagy is partially involved in the protective effects of HRW in VD rats.•Excessive autophagy and apoptosis are both activated 4 weeks after bilateral occlusion of the common carotid artery surgery in rats.
Vascular dementia (VD) is a heterogeneous group of brain disorders in which cognitive impairment is attributed to cerebrovascular pathologies. Autophagy, a self-cannibalization mechanism, has been demonstrated to be involved in VD progression. Molecular hydrogen is known for its powerful anti-oxidative, anti-apoptotic, and anti-inflammatory activities, and it is also involved in autophagy. However, the effects of hydrogen on VD remain unclear. The current study found that hydrogen-rich water (HRW) significantly alleviated spatial learning and memory impairments. Similar to donepezil treatment, HRW also inhibited neuron loss and shrinkage in the hippocampal CA1 region. In addition, we found that HRW significantly increased the Bcl-2/Bax expression ratio and decreased cleaved caspase-3 expression levels in the hippocampus of VD rats. Moreover, electron microscopy revealed that HRW decreased the number of autophagosomes. We also observed that HRW reduced the increased ratio of LC3-II/I and Beclin 1 expression and saliently upregulated p62 expression. Furthermore, FoxO1 (a major mediator of autophagy regulation) and Atg7 levels were apparently decreased in the hippocampus of HRW-treated bilateral common carotid artery occlusion (2VO) rats. Taken together, these data show that molecular hydrogen exerts beneficial effects on cognitive impairment induced by chronic cerebral hypoperfusion. FoxO1-mediated autophagy plays an important role in the neuroprotective effects of hydrogen in a rat model of VD. Furthermore, the present findings highlight that HRW should be further investigated as a new therapeutic strategy for VD treatment in the future. |
---|---|
ISSN: | 0166-4328 1872-7549 |
DOI: | 10.1016/j.bbr.2018.05.023 |