All-dielectric metalens for terahertz wave imaging
Terahertz wave imaging offers promising properties for non-destructive testing applications in the areas of homeland security, medicine, and industrial inspection. However, conventional optical lenses are heavy and bulky and difficult to integrate. An all-dielectric metasurface provides an attractiv...
Gespeichert in:
Veröffentlicht in: | Optics express 2018-05, Vol.26 (11), p.14132-14142 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Terahertz wave imaging offers promising properties for non-destructive testing applications in the areas of homeland security, medicine, and industrial inspection. However, conventional optical lenses are heavy and bulky and difficult to integrate. An all-dielectric metasurface provides an attractive way to realize a planar lens of light weight that is ultrathin and offers ease of integration. Terahertz lenses based on various metasurfaces have been studied, especially for the application of wave focusing, while there are few experimental demonstrations of terahertz wave imaging lenses based on an all-dielectric metasurface. In the present work, we propose a metalens based on an all-dielectric metasurface with a sub-wavelength unit size of 0.39λ for terahertz wave imaging and experimentally demonstrate its performance in focusing and imaging. A large numerical aperture metalens was fabricated with a focal length of 300λ, radius of 300λ, and numerical aperture of 0.707. The experimental results show that the lens can focus THz waves with an incident angle up to 48°. More importantly, clear terahertz wave images of different objects were obtained for both different cases of forward- and inverse-incident directions, which demonstrate the reversibility of the metalens for imaging. Such a metalens provides a way for realization of all-planar-lens THz imaging system, and might find application in terahertz wave imaging, information processing, microscopy, and others. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.26.014132 |