Wavelength-limited optical accordion
We demonstrate a method to create dynamic optical lattices with lattice constant tunable down to the optical wavelength limit. The periodicity of 1D lattice is to be adjusted by rotating the incoming direction of one of the two interfering laser beams with its fiber port. The relative phase between...
Gespeichert in:
Veröffentlicht in: | Optics express 2018-05, Vol.26 (11), p.14346-14355 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate a method to create dynamic optical lattices with lattice constant tunable down to the optical wavelength limit. The periodicity of 1D lattice is to be adjusted by rotating the incoming direction of one of the two interfering laser beams with its fiber port. The relative phase between the stationary and rotating lasers are stabilized with a heterodyne phase-lock loop (Ma et al, Opt. Lett. 19, 1777, 1994), by reflecting part of the rotating laser beam back from a cylindrical mirror near the experiment. Our preliminary demonstration shows tuning of lattice constant λ2sinθ/2, limited by our imaging resolution, between θ = 3° and 20°, with stable and tunable phase. The results can be extended to achieve lattice constant tuning range from ∼ 10λ down to λ/2. We discuss extension of the demonstrated scheme for improved vibration suppression, and for lattice utilizing broadband lasers. Finally we propose a 2D accordion lattice design for quantum gas experiments. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.26.014346 |