A comparative study of the genetic components of three subcategories of autism spectrum disorder

The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) controversially combined previously distinct subcategories of autism spectrum disorder (ASD) into a single diagnostic category. However, genetic convergences and divergences between different ASD subcategories are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular psychiatry 2019-11, Vol.24 (11), p.1720-1731
Hauptverfasser: Li, Jinchen, Hu, Shanshan, Zhang, Kun, Shi, Leisheng, Zhang, Yi, Zhao, Tingting, Wang, Lin, He, Xin, Xia, Kun, Liu, Chunyu, Sun, Zhongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) controversially combined previously distinct subcategories of autism spectrum disorder (ASD) into a single diagnostic category. However, genetic convergences and divergences between different ASD subcategories are unclear. By retrieving 1725 exonic de novo mutations (DNMs) from 1628 subjects with autistic disorder (AD), 1873 from 1564 subjects with pervasive developmental disorder not otherwise specified (PDD-NOS), 276 from 247 subjects with Asperger’s syndrome (AS), and 2077 from 2299 controls, we found that rates of putative functional DNMs (loss-of-function, predicted deleterious missense, and frameshift) in all three subcategories were significantly higher than those in control. We then investigated the convergences and divergences of the three ASD subcategories based on four genetic aspects: whether any two ASD subcategories (1) shared significantly more genes with functional DNMs, (2) exhibited similar spatio-temporal expression patterns, (3) shared significantly more candidate genes, and (4) shared some ASD-associated functional pathways. It is revealed that AD and PDD-NOS were broadly convergent in terms of all four genetic aspects, suggesting these two ASD subcategories may be genetically combined. AS was divergent to AD and PDD-NOS for aspects of functional DNMs and expression patterns, whereas AS and AD/PDD-NOS were convergent for aspects of candidate genes and functional pathways. Our results indicated that the three ASD subcategories present more genetic convergences than divergences, favouring DSM-5’s new classification. This study suggests that specifically defined genotypes and their corresponding phenotypes should be integrated analyzed for precise diagnosis of complex disorders, such as ASD.
ISSN:1359-4184
1476-5578
DOI:10.1038/s41380-018-0081-x