Conjugated Polymers in Bioelectronics

Conspectus The emerging field of organic bioelectronics bridges the electronic world of organic-semiconductor-based devices with the soft, predominantly ionic world of biology. This crosstalk can occur in both directions. For example, a biochemical reaction may change the doping state of an organic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Accounts of chemical research 2018-06, Vol.51 (6), p.1368-1376
Hauptverfasser: Inal, Sahika, Rivnay, Jonathan, Suiu, Andreea-Otilia, Malliaras, George G, McCulloch, Iain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conspectus The emerging field of organic bioelectronics bridges the electronic world of organic-semiconductor-based devices with the soft, predominantly ionic world of biology. This crosstalk can occur in both directions. For example, a biochemical reaction may change the doping state of an organic material, generating an electronic readout. Conversely, an electronic signal from a device may stimulate a biological event. Cutting-edge research in this field results in the development of a broad variety of meaningful applications, from biosensors and drug delivery systems to health monitoring devices and brain–machine interfaces. Conjugated polymers share similarities in chemical “nature” with biological molecules and can be engineered on various forms, including hydrogels that have Young’s moduli similar to those of soft tissues and are ionically conducting. The structure of organic materials can be tuned through synthetic chemistry, and their biological properties can be controlled using a variety of functionalization strategies. Finally, organic electronic materials can be integrated with a variety of mechanical supports, giving rise to devices with form factors that enable integration with biological systems. While these developments are innovative and promising, it is important to note that the field is still in its infancy, with many unknowns and immense scope for exploration and highly collaborative research. The first part of this Account details the unique properties that render conjugated polymers excellent biointerfacing materials. We then offer an overview of the most common conjugated polymers that have been used as active layers in various organic bioelectronics devices, highlighting the importance of developing new materials. These materials are the most popular ethylenedioxythiophene derivatives as well as conjugated polyelectrolytes and ion-free organic semiconductors functionalized for the biological interface. We then discuss several applications and operation principles of state-of-the-art bioelectronics devices. These devices include electrodes applied to sense/trigger electrophysiological activity of cells as well as electrolyte-gated field-effect and electrochemical transistors used for sensing of biochemical markers. Another prime application example of conjugated polymers is cell actuators. External modulation of the redox state of the underlying conjugated polymer films controls the adhesion behavior and viability of cells. These sm
ISSN:0001-4842
1520-4898
DOI:10.1021/acs.accounts.7b00624