Simultaneous Discrimination of Single-Base Mismatch and Full Match Using a Label-Free Single-Molecule Strategy

Identification of single-base mismatches has found wide applications in disease diagnosis, pharmacogenetics, and population genetics. However, there is still a great challenge in the simultaneous discrimination of single-base mismatch and full match. Combined with a nanopore electrochemical sensor,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2018-07, Vol.90 (13), p.8102-8107
Hauptverfasser: Yang, Qiufang, Ai, Tingting, Lv, You, Huang, Yuqin, Geng, Jia, Xiao, Dan, Zhou, Cuisong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Identification of single-base mismatches has found wide applications in disease diagnosis, pharmacogenetics, and population genetics. However, there is still a great challenge in the simultaneous discrimination of single-base mismatch and full match. Combined with a nanopore electrochemical sensor, a shared-stem structure of molecular beacon was designed that did not need the labeling, but achieved an enhanced signal-to-background ratio of ∼104, high thermodynamic stability to bind with target sequences, and a fast hybridization rate. Fully matched and single-base mismatched sequences were simultaneously discriminated at the single-molecule level, which is expected to have potential applications ranging from the quick detection, early clinical diagnostics to point-of-care research.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.8b01285