High-density deformation nanotwin induced significant improvement in the plasticity of polycrystalline γ-TiAl-based intermetallic alloys

Intermetallic alloys with high melting point can mostly serve as promising high-temperature structural materials, but their intrinsic brittleness limits their further application. Herein, we developed a strategy to realize high strength and high plasticity simultaneously in Cr-rich γ-TiAl-based inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-06, Vol.10 (24), p.11365-11374
Hauptverfasser: Liu, Shiqiu, Ding, Hongsheng, Zhang, Hailong, Chen, Ruirun, Guo, Jingjie, Fu, Hengzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intermetallic alloys with high melting point can mostly serve as promising high-temperature structural materials, but their intrinsic brittleness limits their further application. Herein, we developed a strategy to realize high strength and high plasticity simultaneously in Cr-rich γ-TiAl-based intermetallic alloys via introducing high-density deformation nanotwins. Non-equilibrium continuous casting followed by annealing in the (α + γ) phase region generated numerous Shockley partial dislocations and stacking faults as well as a number of α2 nanoparticles in the γ-TiAl phase. The substantial Shockley partial dislocations and stacking faults acting as effective heterogeneous nucleation sites favored the generation of high-density nanotwins in the as-annealed alloys during deformation, especially within the γ lamellae. This strategy can also be applied to other brittle alloys with a favorable twinning deformation mechanism and paves the way for the development of high-strength and high-ductility materials.
ISSN:2040-3364
2040-3372
DOI:10.1039/c8nr01659c