Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid
Toxic concentrations of monocarboxylic weak acids present in lignocellulosic hydrolyzates affect cell integrity and fermentative performance of Saccharomyces cerevisiae . In this work, we report the deletion of the general catabolite repressor Mig1p as a strategy to improve the tolerance of S. cerev...
Gespeichert in:
Veröffentlicht in: | Journal of industrial microbiology & biotechnology 2018-08, Vol.45 (8), p.735-751 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Toxic concentrations of monocarboxylic weak acids present in lignocellulosic hydrolyzates affect cell integrity and fermentative performance of
Saccharomyces cerevisiae
. In this work, we report the deletion of the general catabolite repressor Mig1p as a strategy to improve the tolerance of
S. cerevisiae
towards inhibitory concentrations of acetic, formic or levulinic acid. In contrast with the
wt
yeast, where the growth and ethanol production were ceased in presence of acetic acid 5 g/L or formic acid 1.75 g/L (initial pH not adjusted), the
m9
strain (
Δmig1::kan
) produced 4.06 ± 0.14 and 3.87 ± 0.06 g/L of ethanol, respectively. Also,
m9
strain tolerated a higher concentration of 12.5 g/L acetic acid (initial pH adjusted to 4.5) without affecting its fermentative performance. Moreover,
m9
strain produced 33% less acetic acid and 50–70% less glycerol in presence of weak acids, and consumed acetate and formate as carbon sources under aerobic conditions. Our results show that the deletion of Mig1p provides a single gene deletion target for improving the acid tolerance of yeast strains significantly. |
---|---|
ISSN: | 1367-5435 1476-5535 |
DOI: | 10.1007/s10295-018-2053-1 |