The cross-flow instability of the boundary layer on a rotating cone

Experimental studies have shown that the boundary-layer flow over a rotating cone is susceptible to cross-flow and centrifugal instability modes of spiral nature, depending on the cone sharpness. For half-angles (ψ) ranging from propeller nose cones to rotating disks (ψ ≥ 40°), the instability trigg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2009-03, Vol.622, p.209-232
Hauptverfasser: GARRETT, S. J., HUSSAIN, Z., STEPHEN, S. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Experimental studies have shown that the boundary-layer flow over a rotating cone is susceptible to cross-flow and centrifugal instability modes of spiral nature, depending on the cone sharpness. For half-angles (ψ) ranging from propeller nose cones to rotating disks (ψ ≥ 40°), the instability triggers co-rotating vortices, whereas for sharp spinning missiles (ψ < 40°), counter-rotating vortices are observed. In this paper we provide a mathematical description of the onset of co-rotating vortices for a family of cones rotating in quiescent fluid, with a view towards explaining the effect of ψ on the underlying transition of dominant instability. We investigate the stability of inviscid cross-flow modes (type I) as well as modes which arise from a viscous–Coriolis force balance (type II), using numerical and asymptotic methods. The influence of ψ on the number and orientation of the spiral vortices is examined, with comparisons drawn between our two distinct methods as well as with previous experimental studies. Our results indicate that increasing ψ has a stabilizing effect on both the type I and type II modes. Favourable agreement is obtained between the numerical and asymptotic methods presented here and existing experimental results for ψ > 40°. Below this half-angle we suggest that an alternative instability mechanism is at work, which is not amenable to investigation using the formulation presented here.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112008005181