Immobilization of Alkali Metal Fluorides via Recrystallization in a Cationic Lamellar Material, [Th(MoO4)(H2O)4Cl]Cl·H2O
Searching for cationic extended materials with a capacity for anion exchange resulted in a unique thorium molybdate chloride (TMC) with the formula of [Th(MoO4)(H2O)4Cl]Cl·H2O. The structure of TMC is composed of zigzagging cationic layers [Th(MoO4)(H2O)4Cl]+ with Cl– as interlamellar charge-ba...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2018-06, Vol.57 (12), p.6778-6782 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Searching for cationic extended materials with a capacity for anion exchange resulted in a unique thorium molybdate chloride (TMC) with the formula of [Th(MoO4)(H2O)4Cl]Cl·H2O. The structure of TMC is composed of zigzagging cationic layers [Th(MoO4)(H2O)4Cl]+ with Cl– as interlamellar charge-balancing anions. Instead of performing ion exchange, alkali thorium fluorides were formed after soaking TMC in AF (A = Na, K, and Cs) solutions. The mechanism of AF immobilization is elucidated by the combination of SEM-EDS, PXRD, FTIR, and EXAFS spectroscopy. It was observed that four water molecules coordinating with the Th4+ center in TMC are vulnerable to competition with F–, due to the formation of more favorable Th–F bonds compared to Th–OH2. This leads to a single crystal-to-polycrystalline transformation via a pathway of recrystallization to form alkali thorium fluorides. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.8b00954 |