Using Intrinsic Surfaces To Calculate the Free-Energy Change When Nanoparticles Adsorb on Membranes
A reaction coordinate that can be used when investigating binding to dynamical surfaces with molecular dynamics is introduced. This coordinate measures the distance between the adsorbate and an isocontour in a density field. Furthermore, the coordinate is continuous so simulation biases that are a f...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2018-06, Vol.122 (24), p.6417-6422 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A reaction coordinate that can be used when investigating binding to dynamical surfaces with molecular dynamics is introduced. This coordinate measures the distance between the adsorbate and an isocontour in a density field. Furthermore, the coordinate is continuous so simulation biases that are a function of this coordinate can be added to the Hamiltonian to increase the rate of adsorption/desorption. The efficacy of this new coordinates is demonstrated by performing metadynamics simulations to measure the strength with which a hydrophilic nanoparticle binds to a lipid bilayer. An investigation of the binding mechanism that is performed using the coordinate demonstrates that the lipid bilayer undergoes a series of concerted changes in structure as the nanoparticle binds. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/acs.jpcb.8b03661 |