An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): Implementation, validations and applications

The structured-grid surface wave model SWAN (Simulating Waves Nearshore) has been converted into an unstructured-grid finite-volume version (hereafter referred to as FVCOM-SWAVE) for use in coastal ocean regions with complex irregular geometry. The implementation is made using the Flux-Corrected Tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean modelling (Oxford) 2009, Vol.28 (1), p.153-166
Hauptverfasser: Qi, Jianhua, Chen, Changsheng, Beardsley, Robert C., Perrie, Will, Cowles, Geoffrey W., Lai, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structured-grid surface wave model SWAN (Simulating Waves Nearshore) has been converted into an unstructured-grid finite-volume version (hereafter referred to as FVCOM-SWAVE) for use in coastal ocean regions with complex irregular geometry. The implementation is made using the Flux-Corrected Transport (FCT) algorithm in frequency space, the implicit Crank–Nicolson method in directional space and options of explicit or implicit second-order upwind finite-volume schemes in geographic space. FVCOM-SWAVE is validated using four idealized benchmark test problems with emphasis on numerical dispersion, wave-current interactions, wave propagation over a varying-bathymetry shallow water region, and the basic wave grow curves. Results demonstrate that in the rectangular geometric domain, the second-order finite-volume method used in FVCOM-SWAVE has the same accuracy as the third-order finite-difference method used in SWAN. FVCOM-SWAVE was then applied to simulate wind-induced surface waves on the US northeast shelf with a central focus in the Gulf of Maine and New England Shelf. Through improved geometric fitting of the complex irregular coastline, FVCOM-SWAVE was able to robustly capture the spatial and temporal variation of surface waves in both deep and shallow regions along the US northeast coast.
ISSN:1463-5003
1463-5011
DOI:10.1016/j.ocemod.2009.01.007