Modeling of Human Hepatic and Gastrointestinal Ethanol Metabolism with Kinetic-Mechanism-Based Full-Rate Equations of the Component Alcohol Dehydrogenase Isozymes and Allozymes

Alcohol dehydrogenase (ADH) is the principal enzyme responsible for the metabolism of ethanol. Human ADH constitutes a complex family of isozymes and allozymes with striking variation in kinetic properties and tissue distribution. The liver and the gastrointestinal tract are the major sites for firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical research in toxicology 2018-07, Vol.31 (7), p.556-569
Hauptverfasser: Chi, Yu-Chou, Lee, Shou-Lun, Lee, Yung-Ping, Lai, Ching-Long, Yin, Shih-Jiun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alcohol dehydrogenase (ADH) is the principal enzyme responsible for the metabolism of ethanol. Human ADH constitutes a complex family of isozymes and allozymes with striking variation in kinetic properties and tissue distribution. The liver and the gastrointestinal tract are the major sites for first-pass metabolism (FPM). The quantitative contributions of ADH isozymes and ethnically distinct allozymes to cellular ethanol metabolism remain poorly understood. To address this issue, kinetic mechanism and the steady-state full-rate equations for recombinant human class I ADH1A, ADH1B (including allozymes ADH1B1, ADH1B2, and ADH1B3), ADH1C (including allozymes ADH1C1 and ADH1C2), class II ADH2, and class IV ADH4 were determined by initial velocity, product inhibition, and dead-end inhibition experiments in 0.1 M sodium phosphate at pH 7.5 and 25 °C. Models of the hepatic and gastrointestinal metabolisms of ethanol were constructed by linear combination of the numerical full-rate equations of the component isozymes and allozymes in target organs. The organ simulations indicate that in homozygous ADH1B*1/*1 livers, a representative genotype among ethnically distinct populations due to high prevalence of the allele, major contributors at 1 to 10 mM ethanol are ADH1B1 (45% to 24%) and the ADH1C allozymes (54% to 40%). The simulated activities at 1 to 50 mM ethanol for the gastrointestinal tract (total mucosae of ADH1C*1/*1–ADH4 stomach and the ADH1C*1/*1–ADH2 duodenum and jejunum) account for 0.68%–0.76% of that for the ADH1B*1/*1–ADH1C*1/*1 liver, suggesting gastrointestinal tract plays a relatively minor role in the human FPM of ethanol. Based on the flow-limited sinusoidal perfusion model, the simulated hepatic K m app, V max app, and C i at a 95% clearance of ethanol for ADH1B*1/*1–ADH1C*1/*1 livers are compatible to that documented in hepatic vein catheterization and pharmacokinetic studies with humans that controlled for the genotypes. The model simulations suggest that slightly higher or similar ethanol elimination rates for ADH1B*2/*2 and ADH1B*3/*3 individuals compared with those for ADH1B*1/*1 individuals may result from higher hepatocellular acetaldehyde.
ISSN:0893-228X
1520-5010
DOI:10.1021/acs.chemrestox.8b00003