Simultaneous Determination of Salsolinol Enantiomers and Dopamine in Human Plasma and Cerebrospinal Fluid by Chemical Derivatization Coupled to Chiral Liquid Chromatography/Electrospray Ionization-Tandem Mass Spectrometry

A sensitive, specific, and robust method to simultaneously determine enantiomeric salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, SAL), a potential biomarker implicated in alcohol-related neurotoxicity in a stereoselective manner, and its precursor dopamine (DA) has been developed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2007-12, Vol.79 (23), p.9166-9173
Hauptverfasser: Lee, Jeongrim, Huang, Bill X, Yuan, Zhixin, Kim, Hee-Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A sensitive, specific, and robust method to simultaneously determine enantiomeric salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, SAL), a potential biomarker implicated in alcohol-related neurotoxicity in a stereoselective manner, and its precursor dopamine (DA) has been developed using simple chemical derivatization and chiral separation coupled with electrospray ionization-tandem mass spectrometry (ESI-MS/MS). SAL enantiomers and DA were converted to stable pentafluorobenzyl (PFB) derivatives directly from aqueous media. Bulky PFB groups introduced into the SAL structure enabled baseline separation of SAL stereoisomers on a chiral column without cumbersome chiral derivatization to unstable SAL diastereomers. Subsequent analysis by ESI-MS/MS with multiple reaction monitoring (MRM) in the presence of deuterium-labeled internal standards allowed specific detection of both derivatives with a wide dynamic range (SAL, 0.5−5000 pg; DA, 0.02−20 ng). The limit of quantitation assayed in the plasma matrix was below 10 pg for each SAL enantiomer and 100 pg for DA. Both coefficient of variance and error for inter- and intraday measurements in the blank plasma were less than 10% for SAL and DA in the concentration range of 10−4000 pg/mL and 0.1−8 ng/mL, respectively. This strategy enabled routine and specific determination of both SAL enantiomers and DA from 0.5 mL of human plasma and cerebrospinal fluid, which has not been possible using existing methodologies.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac0715827