Spatial and temporal characteristics of precipitation using an extensive network of ground gauge in the Korean Peninsula
The aim of the present study is to investigate the spatial and temporal structures of precipitation over the Korean Peninsula using extensive AWS (automatic weather stations) observation network data for the summertime from May to September. Additionally TRMM/PR precipitation data in the southern pa...
Gespeichert in:
Veröffentlicht in: | Atmospheric research 2007-12, Vol.86 (3), p.330-339 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of the present study is to investigate the spatial and temporal structures of precipitation over the Korean Peninsula using extensive AWS (automatic weather stations) observation network data for the summertime from May to September. Additionally TRMM/PR precipitation data in the southern part of peninsula was used to investigate the vertical structure. For the spatial and temporal scales of hourly precipitation, the e-folding threshold approach was employed to cut off the correlation in terms of distance in km and time in hours. From a correlation analysis of AWS precipitation in terms of time and space, it was found out that the e-folding distance and e-folding time in correlation coefficients ranged from 50 km–110 km and 1 h–2 h. The shortest distance and time in e-folding values were found to be in July and August. Precipitation structures in May and September tended to be isotropic, a cell-type structure, and those of July and August had an apparent band type, from the southwest to northeast. In the case of the vertical feature of precipitation, the correlation with height showed that the vertically efficient height was within 5 km as convective rain cells with a monthly difference of 1.2 km. In this study, the coastal effect tended to slightly increase threshold values. |
---|---|
ISSN: | 0169-8095 1873-2895 |
DOI: | 10.1016/j.atmosres.2007.07.002 |