Dioscin protects against coronary heart disease by reducing oxidative stress and inflammation via Sirt1/Nrf2 and p38 MAPK pathways

Cardiovascular diseases are common diseases in Sweden as in most countries. In 2016, 25,700 persons suffered from coronary heart disease (CHD) and 25% of these died within 28 days. The present study investigated whether dioscin may exert protective effects against CHD‑induced heart apoptosis, oxidat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular medicine reports 2018-07, Vol.18 (1), p.973-980
Hauptverfasser: Yang, Bo, Xu, Bin, Zhao, Hua, Wang, Ya-Bin, Zhang, Jian, Li, Chuan-Wei, Wu, Qing, Cao, Yu-Kang, Li, Yang, Cao, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cardiovascular diseases are common diseases in Sweden as in most countries. In 2016, 25,700 persons suffered from coronary heart disease (CHD) and 25% of these died within 28 days. The present study investigated whether dioscin may exert protective effects against CHD‑induced heart apoptosis, oxidative stress and inflammation in a pig model and the potential underlying mechanisms. Adult pigs were used to establish a CHD model group and 80 mg/kg dioscin was administered for 4 weeks. Histological analysis and measurement of serum levels of heart injury markers demonstrated that 80 mg/kg dioscin markedly alleviated CHD, while left ventricular ejection fraction and left ventricular systolic internal diameter measurements indicated that 80 mg/kg dioscin also increased heart function in the CHD pig model. Furthermore, western blotting demonstrated that 80 mg/kg dioscin significantly reduced protein levels of apoptosis markers in the heart of CHD model pigs, including Bcl‑2‑associated X and caspase‑3, potentially via the suppression of poly (ADP‑ribose) polymerase 1 (PARP)/p53 expression. Additionally, the results of ELISA and western blotting demonstrated that 80 mg/kg dioscin may reduce oxidative stress and inflammation in CHD model pigs through the promotion of sirtuin 1 (Sirt1)/nuclear factor erythroid 2‑related factor 2 (Nrf2) protein expression and the suppression of PARP/p53 and p38 mitogen‑activated protein kinase (MAPK) expression. The results of the current study indicate that dioscin may protect against CHD by regulating oxidative stress and inflammation via Sirt1/Nrf2 and p38 MAPK pathways.
ISSN:1791-2997
1791-3004
DOI:10.3892/mmr.2018.9024