Fluctuations in blood biomarkers of head trauma in NCAA football athletes over the course of a season

Repetitive subconcussive head trauma is a consequence of participation in contact sports and may be linked to neurodegenerative diseases. The degree of neurological injury caused by subconcussive head trauma is not easily detectible, and this injury does not induce readily identifiable clinical sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurosurgery 2019-05, Vol.130 (5), p.1655-1662
Hauptverfasser: Oliver, Jonathan M, Anzalone, Anthony J, Stone, Jason D, Turner, Stephanie M, Blueitt, Damond, Garrison, J Craig, Askow, Andrew T, Luedke, Joel A, Jagim, Andrew R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Repetitive subconcussive head trauma is a consequence of participation in contact sports and may be linked to neurodegenerative diseases. The degree of neurological injury caused by subconcussive head trauma is not easily detectible, and this injury does not induce readily identifiable clinical signs or symptoms. Recent advancements in immunoassays make possible the detection and quantification of blood biomarkers linked to head trauma. Identification of a blood biomarker that can identify the extent of neurological injury associated with subconcussive head trauma may provide an objective measure for informed decisions concerning cumulative exposure to subconcussive head trauma. The purpose of the current study was to examine changes in the blood biomarkers of subconcussive head trauma over the course of an American football season. Thirty-five National Collegiate Athletic Association (NCAA) American football athletes underwent blood sampling throughout the course of a football season. Serial samples were obtained throughout the 2016 season, during which the number and magnitude of head impacts changed. Blood samples were analyzed for plasma concentrations of tau and serum concentrations of neurofilament light polypeptide (NF-L). Athletes were grouped based on their starter status, because athletes identified as starters are known to sustain a greater number of impacts. Between-group differences and time-course differences were assessed. In nonstarters, plasma concentrations of tau decreased over the course of the season, with lower values observed in starters; this resulted in a lower area under the curve (AUC) (starters: 416.78 ± 129.17 pg/ml/day; nonstarters: 520.84 ± 163.19 pg/ml/day; p = 0.050). Plasma concentrations of tau could not be used to discern between starters and nonstarters. In contrast, serum concentrations of NF-L increased throughout the season as head impacts accumulated, specifically in those athletes categorized as starters. The higher serum concentrations of NF-L observed in starters resulted in a larger AUC (starters: 1605.03 ± 655.09 pg/ml/day; nonstarters: 1067.29 ± 272.33 pg/ml/day; p = 0.007). The AUC of the receiver operating characteristic curve analyses displayed fair to modest accuracy to identify athletes who were starters with the use of serum NF-L following periods of repetitive impacts. The different patterns observed in serum NF-L and plasma tau concentrations provide preliminary evidence for the use of blood biomarkers
ISSN:0022-3085
1933-0693
1933-0693
DOI:10.3171/2017.12.JNS172035