Cold-active citrate synthase: mutagenesis of active-site residues
A comparison of the crystal structure of the dimeric enzyme citrate synthase from the psychrophilic Arthrobacter strain DS2-3R with that of the structurally homologous enzyme from the hyperthermophilic Pyrococcus furiosus reveals a significant difference in the accessibility of their active sites to...
Gespeichert in:
Veröffentlicht in: | Protein engineering 2001-09, Vol.14 (9), p.655-661 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A comparison of the crystal structure of the dimeric enzyme citrate synthase from the psychrophilic Arthrobacter strain DS2-3R with that of the structurally homologous enzyme from the hyperthermophilic Pyrococcus furiosus reveals a significant difference in the accessibility of their active sites to substrates. In this work, we investigated the possible role in cold activity of the greater accessibility of the Arthrobacter citrate synthase. By site-directed mutagenesis, we replaced two alanine residues at the entrance to the active site with an arginine and glutamate residue, respectively, as found in the equivalent positions of the Pyrococcus enzyme Also, we introduced a loop into the active site of the psychrophilic citrate synthase, again mimicking the situation in the hyperthermophilic enzyme. Analysis of the thermoactivity and thermostability of the mutant enzymes reveals that cold activity is not significantly compromised by the mutations, but rather the affinity for one of the substrates, acetyl-CoA, is dramatically increased. Moreover, one mutant (Loop insertion/K313L/A361R) has an increased thermostability but a reduced temperature optimum for catalytic activity. This unexpected relationship between stability and activity is discussed with respect to the nature of the dependence of catalytic activity on temperature. |
---|---|
ISSN: | 0269-2139 1741-0126 1460-213X 1741-0134 |
DOI: | 10.1093/protein/14.9.655 |