Fabrication of Micropatterned Dipeptide Hydrogels by Acoustic Trapping of Stimulus‐Responsive Coacervate Droplets

Acoustic standing waves offer an excellent opportunity to trap and spatially manipulate colloidal objects. This noncontact technique is used for the in situ formation and patterning in aqueous solution of 1D or 2D arrays of pH‐responsive coacervate microdroplets comprising poly(diallyldimethylammoni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-06, Vol.14 (26), p.e1800739-n/a
Hauptverfasser: Nichols, Madeleine K., Kumar, Ravinash Krishna, Bassindale, Philip G., Tian, Liangfei, Barnes, Adrian C., Drinkwater, Bruce W., Patil, Avinash J., Mann, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acoustic standing waves offer an excellent opportunity to trap and spatially manipulate colloidal objects. This noncontact technique is used for the in situ formation and patterning in aqueous solution of 1D or 2D arrays of pH‐responsive coacervate microdroplets comprising poly(diallyldimethylammonium) chloride and the dipeptide N‐fluorenyl‐9‐methoxy‐carbonyl‐D‐alanine‐D‐alanine. Decreasing the pH of the preformed droplet arrays results in dipeptide nanofilament self‐assembly and subsequent formation of a micropatterned supramolecular hydrogel that can be removed as a self‐supporting monolith. Guest molecules such as molecular dyes, proteins, and oligonucleotides are sequestered specifically within the coacervate droplets during acoustic processing to produce micropatterned hydrogels containing spatially organized functional components. Using this strategy, the site‐specific isolation of multiple enzymes to drive a catalytic cascade within the micropatterned hydrogel films is exploited. Acoustic standing waves are employed to trap and spatially organize stimuli‐responsive polymer–dipeptide coacervate microdroplets that readily undergo a pH‐induced transformation into micropatterned supramolecular hydrogels. The noncontact acoustic trapping technique enables site‐specific isolation of an enzyme cascade reaction within the micropatterned soft matter.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.201800739