novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly

The gene-for-gene interaction triggering resistance of wheat against first-instar Hessian fly larvae utilizes specialized defence response genes not previously identified in other interactions with pests or pathogens. We characterized the expression of Hfr-3, a novel gene encoding a lectin-like prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant pathology 2007, Vol.8 (1), p.69-82
Hauptverfasser: GIOVANINI, MARCELO P, SALTZMANN, KURT D, PUTHOFF, DAVID P, GONZALO, MARTIN, OHM, HERBERT W, WILLIAMS, CHRISTIE E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The gene-for-gene interaction triggering resistance of wheat against first-instar Hessian fly larvae utilizes specialized defence response genes not previously identified in other interactions with pests or pathogens. We characterized the expression of Hfr-3, a novel gene encoding a lectin-like protein with 68-70% identity to the wheat germ agglutinins. Within each of the four predicted chitin-binding hevein domains, the HFR-3 translated protein sequence contained five conserved saccharide-binding amino acids. Quantification of Hfr-3 mRNA levels confirmed a rapid response and gradual increase, up to 3000-fold above the uninfested control in the incompatible interaction 3 days after egg hatch. Hfr-3 mRNA abundance was influenced by the number of larvae per plant, suggesting that resistance is localized rather than systemic. In addition, Hfr-3 was responsive to another sucking insect, the bird cherry-oat aphid, but not to fall armyworm attack, wounding or exogenous application of methyl jasmonate, salicylic acid or abscisic acid. Western blot analysis demonstrated that HFR-3 protein increased in parallel to mRNA levels in crown tissues during incompatible interactions. HFR-3 protein was detected in both virulent and avirulent larvae, indicating ingestion. Anti-nutritional proteins, such as lectins, may be responsible for the apparent starvation of avirulent first-instar Hessian fly larvae during the initial few days of incompatible interactions with resistant wheat plants.
ISSN:1464-6722
1364-3703
DOI:10.1111/j.1364-3703.2006.00371.x