Rapid Accumulation of Glutathione During Light Stress in Arabidopsis

Abstract Environmental stress conditions can drastically affect plant growth and productivity. In contrast to soil moisture or salinity that can gradually change over a period of days or weeks, changes in light intensity or temperature can occur very rapidly, sometimes over the course of minutes or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and cell physiology 2018-09, Vol.59 (9), p.1817-1826
Hauptverfasser: Choudhury, Feroza K, Devireddy, Amith R, Azad, Rajeev K, Shulaev, Vladimir, Mittler, Ron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Environmental stress conditions can drastically affect plant growth and productivity. In contrast to soil moisture or salinity that can gradually change over a period of days or weeks, changes in light intensity or temperature can occur very rapidly, sometimes over the course of minutes or seconds. We previously reported that in response to rapid changes in light intensity (0–60 s), Arabidopsis thaliana plants mount a large-scale transcriptomic response that includes several different transcripts essential for light stress acclimation. Here, we expand our analysis of the rapid response of Arabidopsis to light stress using a metabolomics approach and identify 111 metabolites that show a significant alteration in their level during the first 90 s of light stress exposure. We further show that the levels of free and total glutathione accumulate rapidly during light stress in Arabidopsis and that the accumulation of total glutathione during light stress is associated with an increase in nitric oxide (NO) levels. We further suggest that the increase in precursors for glutathione biosynthesis could be linked to alterations in photorespiration, and that phosphoenolpyruvate could represent a major energy and carbon source for rapid metabolic responses. Taken together, our analysis could be used as an initial road map for the identification of different pathways that could augment the rapid response of plants to abiotic stress. In addition, it highlights the important role of glutathione in these responses.
ISSN:0032-0781
1471-9053
DOI:10.1093/pcp/pcy101