Fabrication of a Flexible and Stretchable Nanostructured Gold Electrode Using a Facile Ultraviolet-Irradiation Approach for the Detection of Nitric Oxide Released from Cells

We developed a simple and environmentally friendly ultraviolet (UV)-irradiation-assisted technique to fabricate a stretchable, nanostructured gold film as a flexible electrode for the detection of NO release. The flexible gold film endows the electrode with desirable electrochemical stability agains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2018-06, Vol.90 (12), p.7158-7163
Hauptverfasser: Zhao, Xu, Wang, Keqing, Li, Bo, Wang, Chao, Ding, Yongqi, Li, Changqing, Mao, Lanqun, Lin, Yuqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We developed a simple and environmentally friendly ultraviolet (UV)-irradiation-assisted technique to fabricate a stretchable, nanostructured gold film as a flexible electrode for the detection of NO release. The flexible gold film endows the electrode with desirable electrochemical stability against mechanical deformation, including bending to different curvatures and bearing repeated bending circumstances (200 times). The flexible nanostructured gold electrodes can catalyze NO oxidation at 0.85 V (as opposed to Ag/AgCl) and detect NO within a wide linearity in the range of 10 nM to 1.295 μM. Its excellent NO-sensing ability and its stretchability together with its biocompatibility allows the electrode to electrochemically monitor NO release from mechanically sensitive HUVECs in both their unstretched and stretched states. This result paves the way for an effective and easily accessible platform for designing stretchable and flexible electrodes and opens more opportunities for sensing chemical-signal molecules released from cells or other biological samples during mechanical stimulation.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.8b01088