Development of a Novel Sulfoxide-Containing MS-Cleavable Homobifunctional Cysteine-Reactive Cross-Linker for Studying Protein–Protein Interactions
Cross-linking mass spectrometry (XL-MS) has become an emerging technology for defining protein–protein interactions (PPIs) and elucidating architectures of large protein complexes. Up to now, the most widely used cross-linking reagents target lysines. Although such reagents have been successfully ap...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2018-06, Vol.90 (12), p.7600-7607 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cross-linking mass spectrometry (XL-MS) has become an emerging technology for defining protein–protein interactions (PPIs) and elucidating architectures of large protein complexes. Up to now, the most widely used cross-linking reagents target lysines. Although such reagents have been successfully applied to map PPIs at the proteome-wide scale, comprehensive PPI profiling would require additional cross-linking chemistries. Cysteine is one of the most reactive amino acids and an attractive target for cross-linking owing to its unique role in protein structures. Although sulfhydryl-reactive cross-linkers are commercially available, their applications in XL-MS studies remain sparse, likely due to the difficulty in identifying cysteine cross-linked peptides. Previously, we developed a new class of sulfoxide-containing MS-cleavable cross-linkers to enable fast and accurate identification of cross-linked peptides using multistage tandem mass spectrometry (MS n ). Here, we present the development of a new sulfoxide-containing MS-cleavable homobifunctional cysteine-reactive cross-linker, bismaleimide sulfoxide (BMSO). We demonstrate that BMSO-cross-linked peptides display the same characteristic fragmentation pattern during collision-induced dissociation (CID) as other sulfoxide-containing MS-cleavable cross-linked peptides, thus permitting their simplified analysis and unambiguous identification by MS n . Additionally, we show that BMSO can complement amine- and acidic-residue-reactive reagents for mapping protein-interaction regions. Collectively, this work not only enlarges the toolbox of MS-cleavable cross-linkers with diverse chemistries, but more importantly expands our capacity and capability of studying PPIs in general. |
---|---|
ISSN: | 0003-2700 1520-6882 1520-6882 |
DOI: | 10.1021/acs.analchem.8b01287 |