Evaluation of Dispersion Forecasts Driven by Atmospheric Model Output at Coarse and Fine Resolution

Lagrangian parcel models are often used to predict the fate of airborne hazardous material releases. The atmospheric input for these integrations is typically supplied by surrounding surface and upper-air observations. However, situations may arise in which observations are unavailable and numerical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied meteorology (1988) 2007-11, Vol.46 (11), p.1967-1980
Hauptverfasser: Nachamkin, Jason E., Cook, John, Frost, Mike, Martinez, Daniel, Sprung, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1980
container_issue 11
container_start_page 1967
container_title Journal of applied meteorology (1988)
container_volume 46
creator Nachamkin, Jason E.
Cook, John
Frost, Mike
Martinez, Daniel
Sprung, Gary
description Lagrangian parcel models are often used to predict the fate of airborne hazardous material releases. The atmospheric input for these integrations is typically supplied by surrounding surface and upper-air observations. However, situations may arise in which observations are unavailable and numerical model forecasts may be the only source of atmospheric data. In this study, the quality of the atmospheric forecasts for use in dispersion applications is investigated as a function of the horizontal grid spacing of the atmospheric model. The Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) was used to generate atmospheric forecasts for 14 separate Dipole Pride 26 trials. The simulations consisted of four telescoping one-way nested grids with horizontal spacings of 27, 9, 3, and 1 km, respectively. The 27- and 1-km forecasts were then used as input for dispersion forecasts using the Hazard Prediction Assessment Capability (HPAC) modeling system. The resulting atmospheric and dispersion forecasts were then compared with meteorological and gas-dosage observations collected during Dipole Pride 26. Although the 1-km COAMPS forecasts displayed considerably more detail than those on the 27-km grid, the RMS and bias statistics associated with the atmospheric observations were similar. However, statistics from the HPAC forecasts showed the 1-km atmospheric forcing produced more accurate trajectories than the 27-km output when compared with the dosage measurements.
doi_str_mv 10.1175/2007jamc1570.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20448447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26172109</jstor_id><sourcerecordid>26172109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-8899a1c83e814133087fea443e6f830893bad5d4150259b8203a147f3cffe2ff3</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhk1JoWnaa28FUWhvm-pjZEnHZTfbJCQESns2s1qJevFarkYO5N_HZkMKvSSn-XrmhZm3qj4Jfi6E0d8l52aPBy-0mTpvqlOhtV1YUPLkOZfwrnpPtOccwBh9WvmLe-xGLG3qWYps3dIQMs3VJuXgkQqxdW7vQ8-2D2xZDomGPyG3nt2mXejY3ViGsTAsbJUwU2DY79im7QP7GSh14yz8oXobsaPw8SmeVb83F79Wl4ubux9Xq-XNwmthysJa51B4q4IVIJTi1sSAACrU0U6VU1vc6R0IzaV2Wyu5QgEmKh9jkDGqs-rbUXfI6e8YqDSHlnzoOuxDGqlRoEFZJV8EJa81QK1eAQLY6ZMT-OU_cJ_G3E_XNlKCMqCcnqDzI-RzIsohNkNuD5gfGsGb2cJmtvB6ebuaLWzEtPD1SRXJYxcz9r6lf1vOaXCinrjPR25PJeXnuayFkYI79QiEzKQV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224374395</pqid></control><display><type>article</type><title>Evaluation of Dispersion Forecasts Driven by Atmospheric Model Output at Coarse and Fine Resolution</title><source>American Meteorological Society</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nachamkin, Jason E. ; Cook, John ; Frost, Mike ; Martinez, Daniel ; Sprung, Gary</creator><creatorcontrib>Nachamkin, Jason E. ; Cook, John ; Frost, Mike ; Martinez, Daniel ; Sprung, Gary</creatorcontrib><description>Lagrangian parcel models are often used to predict the fate of airborne hazardous material releases. The atmospheric input for these integrations is typically supplied by surrounding surface and upper-air observations. However, situations may arise in which observations are unavailable and numerical model forecasts may be the only source of atmospheric data. In this study, the quality of the atmospheric forecasts for use in dispersion applications is investigated as a function of the horizontal grid spacing of the atmospheric model. The Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) was used to generate atmospheric forecasts for 14 separate Dipole Pride 26 trials. The simulations consisted of four telescoping one-way nested grids with horizontal spacings of 27, 9, 3, and 1 km, respectively. The 27- and 1-km forecasts were then used as input for dispersion forecasts using the Hazard Prediction Assessment Capability (HPAC) modeling system. The resulting atmospheric and dispersion forecasts were then compared with meteorological and gas-dosage observations collected during Dipole Pride 26. Although the 1-km COAMPS forecasts displayed considerably more detail than those on the 27-km grid, the RMS and bias statistics associated with the atmospheric observations were similar. However, statistics from the HPAC forecasts showed the 1-km atmospheric forcing produced more accurate trajectories than the 27-km output when compared with the dosage measurements.</description><identifier>ISSN: 1558-8424</identifier><identifier>ISSN: 0894-8763</identifier><identifier>EISSN: 1558-8432</identifier><identifier>EISSN: 1520-0450</identifier><identifier>DOI: 10.1175/2007jamc1570.1</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Analysis methods ; Applied sciences ; Atmospheric forcing ; Atmospheric models ; Atmospheric pollution ; Atmospherics ; Boundary layer ; Correlations ; Data analysis ; Data assimilation ; Exact sciences and technology ; Experiments ; Forecasting models ; Hazardous materials ; Marine ; Mathematical models ; Meteorology ; Plumes ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution ; Statistical forecasts ; Statistical weather forecasting ; Studies ; Variables ; Weather ; Weather forecasting ; Wind velocity</subject><ispartof>Journal of applied meteorology (1988), 2007-11, Vol.46 (11), p.1967-1980</ispartof><rights>2007 American Meteorological Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Meteorological Society Nov 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-8899a1c83e814133087fea443e6f830893bad5d4150259b8203a147f3cffe2ff3</citedby><cites>FETCH-LOGICAL-c517t-8899a1c83e814133087fea443e6f830893bad5d4150259b8203a147f3cffe2ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26172109$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26172109$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19954916$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nachamkin, Jason E.</creatorcontrib><creatorcontrib>Cook, John</creatorcontrib><creatorcontrib>Frost, Mike</creatorcontrib><creatorcontrib>Martinez, Daniel</creatorcontrib><creatorcontrib>Sprung, Gary</creatorcontrib><title>Evaluation of Dispersion Forecasts Driven by Atmospheric Model Output at Coarse and Fine Resolution</title><title>Journal of applied meteorology (1988)</title><description>Lagrangian parcel models are often used to predict the fate of airborne hazardous material releases. The atmospheric input for these integrations is typically supplied by surrounding surface and upper-air observations. However, situations may arise in which observations are unavailable and numerical model forecasts may be the only source of atmospheric data. In this study, the quality of the atmospheric forecasts for use in dispersion applications is investigated as a function of the horizontal grid spacing of the atmospheric model. The Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) was used to generate atmospheric forecasts for 14 separate Dipole Pride 26 trials. The simulations consisted of four telescoping one-way nested grids with horizontal spacings of 27, 9, 3, and 1 km, respectively. The 27- and 1-km forecasts were then used as input for dispersion forecasts using the Hazard Prediction Assessment Capability (HPAC) modeling system. The resulting atmospheric and dispersion forecasts were then compared with meteorological and gas-dosage observations collected during Dipole Pride 26. Although the 1-km COAMPS forecasts displayed considerably more detail than those on the 27-km grid, the RMS and bias statistics associated with the atmospheric observations were similar. However, statistics from the HPAC forecasts showed the 1-km atmospheric forcing produced more accurate trajectories than the 27-km output when compared with the dosage measurements.</description><subject>Analysis methods</subject><subject>Applied sciences</subject><subject>Atmospheric forcing</subject><subject>Atmospheric models</subject><subject>Atmospheric pollution</subject><subject>Atmospherics</subject><subject>Boundary layer</subject><subject>Correlations</subject><subject>Data analysis</subject><subject>Data assimilation</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Forecasting models</subject><subject>Hazardous materials</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Plumes</subject><subject>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</subject><subject>Pollution</subject><subject>Statistical forecasts</subject><subject>Statistical weather forecasting</subject><subject>Studies</subject><subject>Variables</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Wind velocity</subject><issn>1558-8424</issn><issn>0894-8763</issn><issn>1558-8432</issn><issn>1520-0450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1r3DAQhk1JoWnaa28FUWhvm-pjZEnHZTfbJCQESns2s1qJevFarkYO5N_HZkMKvSSn-XrmhZm3qj4Jfi6E0d8l52aPBy-0mTpvqlOhtV1YUPLkOZfwrnpPtOccwBh9WvmLe-xGLG3qWYps3dIQMs3VJuXgkQqxdW7vQ8-2D2xZDomGPyG3nt2mXejY3ViGsTAsbJUwU2DY79im7QP7GSh14yz8oXobsaPw8SmeVb83F79Wl4ubux9Xq-XNwmthysJa51B4q4IVIJTi1sSAACrU0U6VU1vc6R0IzaV2Wyu5QgEmKh9jkDGqs-rbUXfI6e8YqDSHlnzoOuxDGqlRoEFZJV8EJa81QK1eAQLY6ZMT-OU_cJ_G3E_XNlKCMqCcnqDzI-RzIsohNkNuD5gfGsGb2cJmtvB6ebuaLWzEtPD1SRXJYxcz9r6lf1vOaXCinrjPR25PJeXnuayFkYI79QiEzKQV</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Nachamkin, Jason E.</creator><creator>Cook, John</creator><creator>Frost, Mike</creator><creator>Martinez, Daniel</creator><creator>Sprung, Gary</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>7TN</scope></search><sort><creationdate>20071101</creationdate><title>Evaluation of Dispersion Forecasts Driven by Atmospheric Model Output at Coarse and Fine Resolution</title><author>Nachamkin, Jason E. ; Cook, John ; Frost, Mike ; Martinez, Daniel ; Sprung, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-8899a1c83e814133087fea443e6f830893bad5d4150259b8203a147f3cffe2ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analysis methods</topic><topic>Applied sciences</topic><topic>Atmospheric forcing</topic><topic>Atmospheric models</topic><topic>Atmospheric pollution</topic><topic>Atmospherics</topic><topic>Boundary layer</topic><topic>Correlations</topic><topic>Data analysis</topic><topic>Data assimilation</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Forecasting models</topic><topic>Hazardous materials</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Plumes</topic><topic>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</topic><topic>Pollution</topic><topic>Statistical forecasts</topic><topic>Statistical weather forecasting</topic><topic>Studies</topic><topic>Variables</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Wind velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nachamkin, Jason E.</creatorcontrib><creatorcontrib>Cook, John</creatorcontrib><creatorcontrib>Frost, Mike</creatorcontrib><creatorcontrib>Martinez, Daniel</creatorcontrib><creatorcontrib>Sprung, Gary</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Oceanic Abstracts</collection><jtitle>Journal of applied meteorology (1988)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nachamkin, Jason E.</au><au>Cook, John</au><au>Frost, Mike</au><au>Martinez, Daniel</au><au>Sprung, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Dispersion Forecasts Driven by Atmospheric Model Output at Coarse and Fine Resolution</atitle><jtitle>Journal of applied meteorology (1988)</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>46</volume><issue>11</issue><spage>1967</spage><epage>1980</epage><pages>1967-1980</pages><issn>1558-8424</issn><issn>0894-8763</issn><eissn>1558-8432</eissn><eissn>1520-0450</eissn><coden>JOAMEZ</coden><abstract>Lagrangian parcel models are often used to predict the fate of airborne hazardous material releases. The atmospheric input for these integrations is typically supplied by surrounding surface and upper-air observations. However, situations may arise in which observations are unavailable and numerical model forecasts may be the only source of atmospheric data. In this study, the quality of the atmospheric forecasts for use in dispersion applications is investigated as a function of the horizontal grid spacing of the atmospheric model. The Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) was used to generate atmospheric forecasts for 14 separate Dipole Pride 26 trials. The simulations consisted of four telescoping one-way nested grids with horizontal spacings of 27, 9, 3, and 1 km, respectively. The 27- and 1-km forecasts were then used as input for dispersion forecasts using the Hazard Prediction Assessment Capability (HPAC) modeling system. The resulting atmospheric and dispersion forecasts were then compared with meteorological and gas-dosage observations collected during Dipole Pride 26. Although the 1-km COAMPS forecasts displayed considerably more detail than those on the 27-km grid, the RMS and bias statistics associated with the atmospheric observations were similar. However, statistics from the HPAC forecasts showed the 1-km atmospheric forcing produced more accurate trajectories than the 27-km output when compared with the dosage measurements.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2007jamc1570.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8424
ispartof Journal of applied meteorology (1988), 2007-11, Vol.46 (11), p.1967-1980
issn 1558-8424
0894-8763
1558-8432
1520-0450
language eng
recordid cdi_proquest_miscellaneous_20448447
source American Meteorological Society; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Analysis methods
Applied sciences
Atmospheric forcing
Atmospheric models
Atmospheric pollution
Atmospherics
Boundary layer
Correlations
Data analysis
Data assimilation
Exact sciences and technology
Experiments
Forecasting models
Hazardous materials
Marine
Mathematical models
Meteorology
Plumes
Pollutants physicochemistry study: properties, effects, reactions, transport and distribution
Pollution
Statistical forecasts
Statistical weather forecasting
Studies
Variables
Weather
Weather forecasting
Wind velocity
title Evaluation of Dispersion Forecasts Driven by Atmospheric Model Output at Coarse and Fine Resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Dispersion%20Forecasts%20Driven%20by%20Atmospheric%20Model%20Output%20at%20Coarse%20and%20Fine%20Resolution&rft.jtitle=Journal%20of%20applied%20meteorology%20(1988)&rft.au=Nachamkin,%20Jason%20E.&rft.date=2007-11-01&rft.volume=46&rft.issue=11&rft.spage=1967&rft.epage=1980&rft.pages=1967-1980&rft.issn=1558-8424&rft.eissn=1558-8432&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/2007jamc1570.1&rft_dat=%3Cjstor_proqu%3E26172109%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224374395&rft_id=info:pmid/&rft_jstor_id=26172109&rfr_iscdi=true