Evaluation of Dispersion Forecasts Driven by Atmospheric Model Output at Coarse and Fine Resolution

Lagrangian parcel models are often used to predict the fate of airborne hazardous material releases. The atmospheric input for these integrations is typically supplied by surrounding surface and upper-air observations. However, situations may arise in which observations are unavailable and numerical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied meteorology (1988) 2007-11, Vol.46 (11), p.1967-1980
Hauptverfasser: Nachamkin, Jason E., Cook, John, Frost, Mike, Martinez, Daniel, Sprung, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lagrangian parcel models are often used to predict the fate of airborne hazardous material releases. The atmospheric input for these integrations is typically supplied by surrounding surface and upper-air observations. However, situations may arise in which observations are unavailable and numerical model forecasts may be the only source of atmospheric data. In this study, the quality of the atmospheric forecasts for use in dispersion applications is investigated as a function of the horizontal grid spacing of the atmospheric model. The Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) was used to generate atmospheric forecasts for 14 separate Dipole Pride 26 trials. The simulations consisted of four telescoping one-way nested grids with horizontal spacings of 27, 9, 3, and 1 km, respectively. The 27- and 1-km forecasts were then used as input for dispersion forecasts using the Hazard Prediction Assessment Capability (HPAC) modeling system. The resulting atmospheric and dispersion forecasts were then compared with meteorological and gas-dosage observations collected during Dipole Pride 26. Although the 1-km COAMPS forecasts displayed considerably more detail than those on the 27-km grid, the RMS and bias statistics associated with the atmospheric observations were similar. However, statistics from the HPAC forecasts showed the 1-km atmospheric forcing produced more accurate trajectories than the 27-km output when compared with the dosage measurements.
ISSN:1558-8424
0894-8763
1558-8432
1520-0450
DOI:10.1175/2007jamc1570.1