Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide
Type A Pasteurella multocida, an animal pathogen, employs a hyaluronan [HA] capsule to avoid host defenses. PmHAS, the 972-residue membrane-associated hyaluronan synthase, catalyzes the transfer of both GlcNAc and GlcUA to form the HA polymer. To define the catalytic and membrane-associated domains,...
Gespeichert in:
Veröffentlicht in: | Glycobiology (Oxford) 2000-09, Vol.10 (9), p.883-889 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Type A Pasteurella multocida, an animal pathogen, employs a hyaluronan [HA] capsule to avoid host defenses. PmHAS, the 972-residue membrane-associated hyaluronan synthase, catalyzes the transfer of both GlcNAc and GlcUA to form the HA polymer. To define the catalytic and membrane-associated domains, pmHAS mutants were analyzed. PmHAS1-703 is a soluble, active HA synthase suggesting that the carboxyl-terminus is involved in membrane association of the native enzyme. PmHAS1-650 is inactive as a HA synthase, but retains GlcNAc-transferase activity. Within the pmHAS sequence, there is a duplicated domain containing a short motif, Asp-Gly-Ser, that is conserved among many beta-glycosyltransferases. Changing this aspartate in either domain to asparagine, glutamate, or lysine reduced the HA synthase activity to low levels. The mutants substituted at residue 196 possessed GlcUA-transferase activity while those substituted at residue 477 possessed GlcNAc-transferase activity. The Michaelis constants of the functional transferase activity of the various mutants, a measure of the apparent affinity of the enzymes for the precursors, were similar to wild-type values. Furthermore, mixing D196N and D477K mutant proteins in the same reaction allowed HA polymerization at levels similar to the wild-type enzyme. These results provide the first direct evidence that the synthase polypeptide utilizes two separate glycosyltransferase sites. |
---|---|
ISSN: | 0959-6658 1460-2423 |
DOI: | 10.1093/glycob/10.9.883 |