Acute hypoxia and reoxygenation-induced DNA oxidation in human mononuclear blood cells

Research indicates that exposure to hypoxia is associated with oxidative stress. In this investigation, healthy subjects were exposed to hypoxia by inhalation of 10% oxygen for 2h (corresponding to 5500m above sea level). The levels of strand breaks and oxidatively damaged purine bases, measured by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 2007-12, Vol.625 (1-2), p.125-133
Hauptverfasser: Risom, Lotte, Lundby, Carsten, Thomsen, Jonas Juhl, Mikkelsen, Lone, Loft, Steffen, Friis, Gitte, Møller, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Research indicates that exposure to hypoxia is associated with oxidative stress. In this investigation, healthy subjects were exposed to hypoxia by inhalation of 10% oxygen for 2h (corresponding to 5500m above sea level). The levels of strand breaks and oxidatively damaged purine bases, measured by the comet assay, and the expression of genes involved in DNA repair of oxidatively damaged DNA were investigated in mononuclear blood cells (MNBC) at baseline, after 2h of hypoxia, 2h of reoxygenation, and 1 day and 8 days after the exposure. The level of strand breaks and oxidized purine bases in MNBC increased following both the 2h of hypoxia and the 2h reoxygenation period, whereas this effect was not observed in unexposed subjects. The expressions of oxoguanine DNA glycosylase 1 (OGG1), nucleoside diphosphate linked moiety X-type motif 1 (NUDT1), nei endonuclease VIII-like 1 (NEIL1), and mutY homolog (MUTYH) were unaltered throughout the experiment in both groups of subjects, indicating that DNA repair genes are not up-regulated by the hypoxia and reoxygenation treatment. Taken together, this report shows that inhalation of 10% oxygen for 2h is associated with increased number of oxidized DNA lesions in MNBC, but acute hypoxia may not inflict upon the regulation of genes involved in repair of oxidized DNA.
ISSN:0027-5107
1386-1964
0027-5107
DOI:10.1016/j.mrfmmm.2007.06.001