Estradiol prevents ozone-induced increases in brain lipid peroxidation and impaired social recognition memory in female rats

Abstract There is increasing concern about the neurodegenerative and behavioral consequences of ozone pollution in industrialized urban centers throughout the world and that women may be more susceptible to brain neurodegenerative disorders. In the present study we have investigated the effects of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2009-03, Vol.159 (3), p.940-950
Hauptverfasser: Guevara-Guzmán, R, Arriaga, V, Kendrick, K.M, Bernal, C, Vega, X, Mercado-Gómez, O.F, Rivas-Arancibia, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract There is increasing concern about the neurodegenerative and behavioral consequences of ozone pollution in industrialized urban centers throughout the world and that women may be more susceptible to brain neurodegenerative disorders. In the present study we have investigated the effects of chronic (30 or 60 days) exposure to ozone on olfactory perception and memory and on levels of lipid peroxidation, α and β estrogen receptors and dopamine β-hydroxylase in the olfactory bulb in ovariectomized female rats. The ability of 17β-estradiol to prevent these effects was then assessed. Results showed that ozone exposure for 30 or 60 days impaired formation/retention of a selective olfactory recognition memory 120 min after exposure to a juvenile stimulus animal with the effect at 60 days being significantly greater than at 30 days. They also showed impaired speed in locating a buried chocolate reward after 60 days of ozone exposure indicating some loss of olfactory perception. These functional impairments could all be prevented by coincident estradiol treatment. In the olfactory bulb, levels of lipid peroxidation were increased at both 30- and 60-day time-points and numbers of cells with immunohistochemical staining for α and β estrogen receptors, and dopamine β-hydroxylase were reduced as were α and β estrogen receptor protein levels. These effects were prevented by estradiol treatment. Oxidative stress damage caused by chronic exposure to ozone does therefore impair olfactory perception and social recognition memory and may do so by reducing noradrenergic and estrogen receptor activity in the olfactory bulb. That these effects can be prevented by estradiol treatment suggests increased susceptibility to neurodegenerative disorders in aging women may be contributed to by reduced estrogen levels post-menopause.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2009.01.047