Cross-scale occupancy dynamics of a postfire specialist in response to variation across a fire regime

1. Fire creates challenges and opportunities for wildlife through rapid destruction, modification and creation of habitat. Fire has spatially variable effects on landscapes; however, for species that benefit from the ephemeral resource patches created by fire, it is critical to understand characteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of animal ecology 2018-09, Vol.87 (5), p.1484-1496
Hauptverfasser: Tingley, Morgan W., Stillman, Andrew N., Wilkerson, Robert L., Howell, Christine A., Sawyer, Sarah C., Siegel, Rodney B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1. Fire creates challenges and opportunities for wildlife through rapid destruction, modification and creation of habitat. Fire has spatially variable effects on landscapes; however, for species that benefit from the ephemeral resource patches created by fire, it is critical to understand characteristics of fires that promote postfire colonization and persistence and the spatial scales on which they operate. 2. Using a model postfire specialist, the black-backed woodpecker (Picoides arcticus), we examined how colonization and persistence varied across two spatial scales as a function of four characteristics of fire regimes—fire severity, fire size, fire ignition date and number of years since fire. 3. We modelled black-backed woodpecker colonization and persistence using data from 108 recently burned forests in the Sierra Nevada and southern Cascades ecoregions of California, USA, that we monitored for up to 10 years following fire. We employed a novel, spatially hierarchical, dynamic occupancy framework which differentiates colonization and persistence at two spatial scales: across fires and within fires. 4. We found strong effects of fire characteristics on dynamic rates, with colonization and persistence declining across both spatial scales with increasing years since fire. Additionally, at sites within fires, colonization decreased with fire size and increased with fire severity and for fires with later ignition dates. 5. Our results support the notion that different aspects of a species' environment are important for population processes at different spatial scales. As habitat quality is ephemeral for any given postfire area, our results illustrate the importance of time since fire in structuring occupancy at the fire level, with other characteristics of fires playing larger roles in determining abundance within individual fires. Our results contribute to the broader understanding of how variation in fire characteristics influences the colonization and persistence of species using ephemeral habitats, which is necessary for conserving and promoting postfire biodiversity in the context of rapidly shifting fire regimes.
ISSN:0021-8790
1365-2656
DOI:10.1111/1365-2656.12851