Narrow Gap Semiconducting Germanium Allotrope from the Oxidation of a Layered Zintl Phase in Ionic Liquids
A metastable germanium allotrope, Ge(oP32), was synthesized as polycrystalline powders and single crystals from the mild-oxidation/delithiation of Li7Ge12 in ionic liquids. Its crystal structure, from single crystal X-ray diffraction (Pbcm, a = 8.1527(4) Å, b = 11.7572(5) Å, c = 7.7617(4) Å), featu...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2018-06, Vol.140 (22), p.6785-6788 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A metastable germanium allotrope, Ge(oP32), was synthesized as polycrystalline powders and single crystals from the mild-oxidation/delithiation of Li7Ge12 in ionic liquids. Its crystal structure, from single crystal X-ray diffraction (Pbcm, a = 8.1527(4) Å, b = 11.7572(5) Å, c = 7.7617(4) Å), features a complex covalent network of 4-bonded Ge, resulting from a well-ordered topotactic oxidative condensation of [Ge12]7– layers. It is a diamagnetic semiconductor (E g = 0.33 eV), and transforms exothermically and irreversibly to α-Ge at 363 °C. This demonstrates the potential of ionic liquids as reactive media in the mild oxidation of Zintl phases to new highly crystallized modifications of elements and simple compounds. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.8b03503 |