Calcium, Sodium, and Transient Receptor Potential Channel Expression in Human Fetal Midbrain-Derived Neural Progenitor Cells
Voltage-gated sodium and calcium channels as well as transient receptor potential (TRP) channels are expressed during the differentiation of human neural progenitor cells (hNPCs) and are likely to be involved in regulating neurogenesis. However, the molecular composition of these ion channels in pro...
Gespeichert in:
Veröffentlicht in: | Stem cells and development 2018-07, Vol.27 (14), p.976-984 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Voltage-gated sodium and calcium channels as well as transient receptor potential (TRP) channels are expressed during the differentiation of human neural progenitor cells (hNPCs) and are likely to be involved in regulating neurogenesis. However, the molecular composition of these ion channels in proliferating and differentiating hNPCs is largely unknown. In this study, we investigated fetal mesencephalic hNPCs in respect to their sodium, calcium, and TRP channel subunit expression and function. Quantitative real-time polymerase chain reaction indicated a significant upregulation of voltage-gated sodium and calcium channel subunits in hNPCs after differentiation for 3 weeks in vitro. In contrast, the TRP channel expression did not increase significantly during hNPC maturation. Intracellular Ca
2+
measurements showed the marked reduction of KCl-induced Ca
2+
transients through inhibition of voltage-gated Ca
2+
channels by verapamil and mibefradil in differentiated hNPCs. Application of TRP channel agonists induced intracellular Ca
2+
peaks already in proliferating hNPCs without affecting their cell division. The coincubation of hNPCs with TRP channel agonists pregnenolone sulfate or RN1747 did not have any significant effect on their proliferation and differentiation. These data indicate that hNPCs derived from fetal midbrain tissue acquire essential voltage-gated sodium and calcium channel properties during neuronal maturation in vitro. An early role of TRP channels in neurogenesis which may be important for regenerative clinical applications or cellular models could not be elucidated using hNPCs. |
---|---|
ISSN: | 1547-3287 1557-8534 |
DOI: | 10.1089/scd.2017.0281 |