Arylruthenium(III) Porphyrin-Catalyzed C–H Oxidation and Epoxidation at Room Temperature and [RuV(Por)(O)(Ph)] Intermediate by Spectroscopic Analysis and Density Functional Theory Calculations
The development of highly active and selective metal catalysts for efficient oxidation of hydrocarbons and identification of the reactive intermediates in the oxidation catalysis are long-standing challenges. In the rapid hydrocarbon oxidation catalyzed by ruthenium(IV) and -(III) porphyrins, the p...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2018-06, Vol.140 (22), p.7032-7042 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of highly active and selective metal catalysts for efficient oxidation of hydrocarbons and identification of the reactive intermediates in the oxidation catalysis are long-standing challenges. In the rapid hydrocarbon oxidation catalyzed by ruthenium(IV) and -(III) porphyrins, the putative Ru(V)-oxo intermediates remain elusive. Herein we report that arylruthenium(III) porphyrins are highly active catalysts for hydrocarbon oxidation. Using catalyst [RuIII(TDCPP)(Ph)(OEt2)] (H2TDCPP = 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin), the oxidation of C–H bonds of various hydrocarbons with oxidant m-CPBA at room temperature gave alcohols/ketones in up to 99% yield within 1 h; use of [ n Bu4N]IO4 as a mild alternative oxidant avoided formation of lactone from cyclic ketone in C–H oxidation, and the catalytic epoxidation with up to 99% yield and high selectivity (no aldehydes as side product) was accomplished within 5 min. UV–vis, electrospray ionization–mass spectrometry, resonance Raman, electron paramagnetic resonance, and kinetic measurements and density functional theory calculations lend evidence for the formation of Ru(V)-oxo intermediate [RuV(TDCPP)(O)(Ph)]. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.8b04470 |