Histopathological alterations in the liver of the sharptooth catfish Clarias gariepinus from polluted aquatic systems in South Africa

There is a need for sensitive bio-monitoring tools in toxicant impact assessment to indicate the effect of toxicants on fish health in polluted aquatic ecosystems. Histopathological assessment of fish tissue allows for early warning signs of disease and detection of long-term injury in cells, tissue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental toxicology 2009-04, Vol.24 (2), p.133-147
Hauptverfasser: Marchand, M.J, van Dyk, J.C, Pieterse, G.M, Barnhoorn, I.E.J, Bornman, M.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a need for sensitive bio-monitoring tools in toxicant impact assessment to indicate the effect of toxicants on fish health in polluted aquatic ecosystems. Histopathological assessment of fish tissue allows for early warning signs of disease and detection of long-term injury in cells, tissues, or organs. The aim of this study was to assess the degree of histopathological alterations in the liver of C. gariepinus from two dams in an urban nature reserve, (Gauteng, South Africa). Two dams (Dam 1 and Dam 2) were chosen for their suspected levels of toxicants. Water and sediments were sampled for metal and potential endocrine disrupting chemical analysis. A quantitative and qualitative histology-based health assessment protocol was employed to determine the adverse health effects in fish. The analysis of blood constituents, fish necropsy, calculation of condition factors, and hepatosomatic indices were employed to support the findings of the qualitative and quantitative histological assessment of liver tissue. Assessment of the liver tissue revealed marked histopathological alterations including: structural alterations (hepatic cord disarray) affecting 27% of field specimens; plasma alterations (granular degeneration 98% and fatty degeneration 25%) of hepatocytes; an increase in melanomacrophage centers (32%); hepatocyte nuclear alterations (90%); and necrosis of liver tissue (14%). The quantitative histological assessment indicated that livers of fish collected from Dam 1 were more affected than the fish livers collected from Dam 2.
ISSN:1520-4081
1522-7278
DOI:10.1002/tox.20397