Recent contamination of mercury in an estuarine environment (Marano lagoon, Northern Adriatic, Italy)

The Marano Lagoon, in the northern Adriatic Sea (Italy), has been affected by mercury (Hg) contamination from industrial and mining activities. It has been estimated that 186,000 kg of Hg were deliberately discharged into the main drainage system (Aussa–Corno River) by a chlor-alkali plant (CAP) fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Estuarine, coastal and shelf science coastal and shelf science, 2009-04, Vol.82 (2), p.273-284
Hauptverfasser: Covelli, Stefano, Acquavita, Alessandro, Piani, Raffaella, Predonzani, Sergio, De Vittor, Cinzia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Marano Lagoon, in the northern Adriatic Sea (Italy), has been affected by mercury (Hg) contamination from industrial and mining activities. It has been estimated that 186,000 kg of Hg were deliberately discharged into the main drainage system (Aussa–Corno River) by a chlor-alkali plant (CAP) from 1940s to 1984. The lagoon has also experienced a secondary long-term Hg input, originated from mining activity in Idrija (Slovenia), due to the supply of fluvial suspended particles carried by the Isonzo River in the Gulf of Trieste. Since local fishing activities are extensively conducted, there is great concern on the risk posed by potentially harmful effects of Hg to the trophic chain. Present inputs of this metal, both in dissolved (52.4–4.1 ng L −1) and particulate (130.8–3.4 ng L −1) phases, were preliminary investigated in the water column. Although direct discharge of Hg from the CAP no longer exists, the metal is still released from the source area into freshwaters, and its distribution and abundance is controlled by the salt-wedge circulation system, which is tide-influenced. Remobilization from bottom sediments can also be a secondary source of Hg into the aquatic environment. A speciation technique, used to investigate the main binding sites and phase associations of Hg in sediments (5.69–0.82 μg g −1), evidenced the presence of mobile (1.8–11%) and potentially available species for methylation processes. The results are particularly important if related to resuspension effects caused by natural events and anthropogenic activities. Preliminary considerations on Hg behaviour in this estuarine environment are reported.
ISSN:0272-7714
1096-0015
DOI:10.1016/j.ecss.2009.01.021