Size effects in finite systems with long-range interactions
Small systems consisting of particles interacting with long-range potentials exhibit enormous size effects. The Tsallis conjecture [Tsallis, Fractals 3, 541 (1995)FRACEG0218-348X10.1142/S0218348X95000473], valid for translationally invariant systems with long-range interactions, states a well-known...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2018-03, Vol.97 (3-1), p.032103-032103, Article 032103 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Small systems consisting of particles interacting with long-range potentials exhibit enormous size effects. The Tsallis conjecture [Tsallis, Fractals 3, 541 (1995)FRACEG0218-348X10.1142/S0218348X95000473], valid for translationally invariant systems with long-range interactions, states a well-known scaling relating different sizes. Here we propose to generalize this conjecture to systems with this symmetry broken, by adjusting one parameter that determines an effective distance to compute the strength of the interaction. We apply this proposal to the one-dimensional Ising model with ferromagnetic interactions that decay as 1/r^{1+σ} in the region where the model has a finite critical temperature. We demonstrate the convenience of using this generalization to study finite-size effects, and we compare this approach with the finite-size scaling theory. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.97.032103 |