Autoresonant excitation of Bose-Einstein condensates

Controlling the state of a Bose-Einstein condensate driven by a chirped frequency perturbation in a one-dimensional anharmonic trapping potential is discussed. By identifying four characteristic time scales in this chirped-driven problem, three dimensionless parameters P_{1,2,3} are defined describi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2018-03, Vol.97 (3-1), p.032210-032210, Article 032210
Hauptverfasser: Batalov, S V, Shagalov, A G, Friedland, L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Controlling the state of a Bose-Einstein condensate driven by a chirped frequency perturbation in a one-dimensional anharmonic trapping potential is discussed. By identifying four characteristic time scales in this chirped-driven problem, three dimensionless parameters P_{1,2,3} are defined describing the driving strength, the anharmonicity of the trapping potential, and the strength of the particles interaction, respectively. As the driving frequency passes the linear resonance in the problem, and depending on the location in the P_{1,2,3} parameter space, the system may exhibit two very different evolutions, i.e., the quantum energy ladder climbing (LC) and the classical autoresonance (AR). These regimes are analyzed both in theory and simulations with the emphasis on the effect of the interaction parameter P_{3}. In particular, the transition thresholds on the driving parameter P_{1} and their width in P_{1} in both the AR and LC regimes are discussed. Different driving protocols are also illustrated, showing efficient control of excitation and deexcitation of the condensate.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.97.032210