Bayesian inference for long-term prediction of significant wave height

This paper considers the problem of estimating long-term predictions of significant wave-height. A method which combines Bayesian methodology and extreme value techniques is adopted. Inferences are based on the Metropolis–Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo sche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coastal engineering (Amsterdam) 2007-05, Vol.54 (5), p.393-400
Hauptverfasser: Scotto, M.G., Guedes Soares, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 5
container_start_page 393
container_title Coastal engineering (Amsterdam)
container_volume 54
creator Scotto, M.G.
Guedes Soares, C.
description This paper considers the problem of estimating long-term predictions of significant wave-height. A method which combines Bayesian methodology and extreme value techniques is adopted. Inferences are based on the Metropolis–Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo scheme. The method is applied to obtain return values of extreme values of significant wave height collected on the northern North Sea. The results are compared with those obtained by Guedes Soares and Scotto [Guedes Soares, C. and Scotto, M.G., 2004. Application of the r-order statistics for long-term predictions of significant wave heights. Coastal Engineering, 51, 387–394].
doi_str_mv 10.1016/j.coastaleng.2006.11.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20407340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378383906001876</els_id><sourcerecordid>20407340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-ec0d2b5e8d46a4338a6f448a33c0011d385c9bbab46e02b6c4acbb66c3d16d4f3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwH7zAlmDHruOOgPiSkFhgti6Xc3GV2sUOIP49qYrEyC23PO-9uocxLkUthTSX6xoTlBEGiqu6EcLUUtZCqAM2k7Ztqla1y0M2E6q1lbJqecxOSlmLaYxdzNjdNXxTCRB5iJ4yRSTuU-ZDiqtqpLzh20x9wDGkyJPnJaxi8AEhjvwLPom_UVi9jafsyMNQ6Ox3z9nr3e3LzUP19Hz_eHP1VKHWi7EiFH3TLcj22oBWyoLxWltQCoWQsld2gcuug04bEk1nUAN2nTGoeml67dWcXezvbnN6_6Ayuk0oSMMAkdJHcY3QolVaTKDdg5hTKZm82-awgfztpHA7cW7t_sS5nTgnpZvETdHz3w4oCIPPEDGUv_xktbV6OXHXe46mhz8DZVcw7AT2IROOrk_h_7IfJTWKBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20407340</pqid></control><display><type>article</type><title>Bayesian inference for long-term prediction of significant wave height</title><source>Elsevier ScienceDirect Journals</source><creator>Scotto, M.G. ; Guedes Soares, C.</creator><creatorcontrib>Scotto, M.G. ; Guedes Soares, C.</creatorcontrib><description>This paper considers the problem of estimating long-term predictions of significant wave-height. A method which combines Bayesian methodology and extreme value techniques is adopted. Inferences are based on the Metropolis–Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo scheme. The method is applied to obtain return values of extreme values of significant wave height collected on the northern North Sea. The results are compared with those obtained by Guedes Soares and Scotto [Guedes Soares, C. and Scotto, M.G., 2004. Application of the r-order statistics for long-term predictions of significant wave heights. Coastal Engineering, 51, 387–394].</description><identifier>ISSN: 0378-3839</identifier><identifier>EISSN: 1872-7379</identifier><identifier>DOI: 10.1016/j.coastaleng.2006.11.003</identifier><identifier>CODEN: COENDE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bayesian inference ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Extreme value models ; Geomorphology, landform evolution ; Marine ; Marine and continental quaternary ; Markov Chain Monte Carlo ; Return value ; Sea-levels ; Surficial geology</subject><ispartof>Coastal engineering (Amsterdam), 2007-05, Vol.54 (5), p.393-400</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-ec0d2b5e8d46a4338a6f448a33c0011d385c9bbab46e02b6c4acbb66c3d16d4f3</citedby><cites>FETCH-LOGICAL-c445t-ec0d2b5e8d46a4338a6f448a33c0011d385c9bbab46e02b6c4acbb66c3d16d4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378383906001876$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18727849$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scotto, M.G.</creatorcontrib><creatorcontrib>Guedes Soares, C.</creatorcontrib><title>Bayesian inference for long-term prediction of significant wave height</title><title>Coastal engineering (Amsterdam)</title><description>This paper considers the problem of estimating long-term predictions of significant wave-height. A method which combines Bayesian methodology and extreme value techniques is adopted. Inferences are based on the Metropolis–Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo scheme. The method is applied to obtain return values of extreme values of significant wave height collected on the northern North Sea. The results are compared with those obtained by Guedes Soares and Scotto [Guedes Soares, C. and Scotto, M.G., 2004. Application of the r-order statistics for long-term predictions of significant wave heights. Coastal Engineering, 51, 387–394].</description><subject>Bayesian inference</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Extreme value models</subject><subject>Geomorphology, landform evolution</subject><subject>Marine</subject><subject>Marine and continental quaternary</subject><subject>Markov Chain Monte Carlo</subject><subject>Return value</subject><subject>Sea-levels</subject><subject>Surficial geology</subject><issn>0378-3839</issn><issn>1872-7379</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwH7zAlmDHruOOgPiSkFhgti6Xc3GV2sUOIP49qYrEyC23PO-9uocxLkUthTSX6xoTlBEGiqu6EcLUUtZCqAM2k7Ztqla1y0M2E6q1lbJqecxOSlmLaYxdzNjdNXxTCRB5iJ4yRSTuU-ZDiqtqpLzh20x9wDGkyJPnJaxi8AEhjvwLPom_UVi9jafsyMNQ6Ox3z9nr3e3LzUP19Hz_eHP1VKHWi7EiFH3TLcj22oBWyoLxWltQCoWQsld2gcuug04bEk1nUAN2nTGoeml67dWcXezvbnN6_6Ayuk0oSMMAkdJHcY3QolVaTKDdg5hTKZm82-awgfztpHA7cW7t_sS5nTgnpZvETdHz3w4oCIPPEDGUv_xktbV6OXHXe46mhz8DZVcw7AT2IROOrk_h_7IfJTWKBA</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Scotto, M.G.</creator><creator>Guedes Soares, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20070501</creationdate><title>Bayesian inference for long-term prediction of significant wave height</title><author>Scotto, M.G. ; Guedes Soares, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-ec0d2b5e8d46a4338a6f448a33c0011d385c9bbab46e02b6c4acbb66c3d16d4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian inference</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Extreme value models</topic><topic>Geomorphology, landform evolution</topic><topic>Marine</topic><topic>Marine and continental quaternary</topic><topic>Markov Chain Monte Carlo</topic><topic>Return value</topic><topic>Sea-levels</topic><topic>Surficial geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scotto, M.G.</creatorcontrib><creatorcontrib>Guedes Soares, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Coastal engineering (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scotto, M.G.</au><au>Guedes Soares, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference for long-term prediction of significant wave height</atitle><jtitle>Coastal engineering (Amsterdam)</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>54</volume><issue>5</issue><spage>393</spage><epage>400</epage><pages>393-400</pages><issn>0378-3839</issn><eissn>1872-7379</eissn><coden>COENDE</coden><abstract>This paper considers the problem of estimating long-term predictions of significant wave-height. A method which combines Bayesian methodology and extreme value techniques is adopted. Inferences are based on the Metropolis–Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo scheme. The method is applied to obtain return values of extreme values of significant wave height collected on the northern North Sea. The results are compared with those obtained by Guedes Soares and Scotto [Guedes Soares, C. and Scotto, M.G., 2004. Application of the r-order statistics for long-term predictions of significant wave heights. Coastal Engineering, 51, 387–394].</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.coastaleng.2006.11.003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-3839
ispartof Coastal engineering (Amsterdam), 2007-05, Vol.54 (5), p.393-400
issn 0378-3839
1872-7379
language eng
recordid cdi_proquest_miscellaneous_20407340
source Elsevier ScienceDirect Journals
subjects Bayesian inference
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Engineering geology
Exact sciences and technology
Extreme value models
Geomorphology, landform evolution
Marine
Marine and continental quaternary
Markov Chain Monte Carlo
Return value
Sea-levels
Surficial geology
title Bayesian inference for long-term prediction of significant wave height
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20for%20long-term%20prediction%20of%20significant%20wave%20height&rft.jtitle=Coastal%20engineering%20(Amsterdam)&rft.au=Scotto,%20M.G.&rft.date=2007-05-01&rft.volume=54&rft.issue=5&rft.spage=393&rft.epage=400&rft.pages=393-400&rft.issn=0378-3839&rft.eissn=1872-7379&rft.coden=COENDE&rft_id=info:doi/10.1016/j.coastaleng.2006.11.003&rft_dat=%3Cproquest_cross%3E20407340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20407340&rft_id=info:pmid/&rft_els_id=S0378383906001876&rfr_iscdi=true