Bayesian inference for long-term prediction of significant wave height
This paper considers the problem of estimating long-term predictions of significant wave-height. A method which combines Bayesian methodology and extreme value techniques is adopted. Inferences are based on the Metropolis–Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo sche...
Gespeichert in:
Veröffentlicht in: | Coastal engineering (Amsterdam) 2007-05, Vol.54 (5), p.393-400 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 400 |
---|---|
container_issue | 5 |
container_start_page | 393 |
container_title | Coastal engineering (Amsterdam) |
container_volume | 54 |
creator | Scotto, M.G. Guedes Soares, C. |
description | This paper considers the problem of estimating long-term predictions of significant wave-height. A method which combines Bayesian methodology and extreme value techniques is adopted. Inferences are based on the Metropolis–Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo scheme. The method is applied to obtain return values of extreme values of significant wave height collected on the northern North Sea. The results are compared with those obtained by Guedes Soares and Scotto [Guedes Soares, C. and Scotto, M.G., 2004. Application of the r-order statistics for long-term predictions of significant wave heights.
Coastal Engineering, 51, 387–394]. |
doi_str_mv | 10.1016/j.coastaleng.2006.11.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20407340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378383906001876</els_id><sourcerecordid>20407340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-ec0d2b5e8d46a4338a6f448a33c0011d385c9bbab46e02b6c4acbb66c3d16d4f3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwH7zAlmDHruOOgPiSkFhgti6Xc3GV2sUOIP49qYrEyC23PO-9uocxLkUthTSX6xoTlBEGiqu6EcLUUtZCqAM2k7Ztqla1y0M2E6q1lbJqecxOSlmLaYxdzNjdNXxTCRB5iJ4yRSTuU-ZDiqtqpLzh20x9wDGkyJPnJaxi8AEhjvwLPom_UVi9jafsyMNQ6Ox3z9nr3e3LzUP19Hz_eHP1VKHWi7EiFH3TLcj22oBWyoLxWltQCoWQsld2gcuug04bEk1nUAN2nTGoeml67dWcXezvbnN6_6Ayuk0oSMMAkdJHcY3QolVaTKDdg5hTKZm82-awgfztpHA7cW7t_sS5nTgnpZvETdHz3w4oCIPPEDGUv_xktbV6OXHXe46mhz8DZVcw7AT2IROOrk_h_7IfJTWKBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20407340</pqid></control><display><type>article</type><title>Bayesian inference for long-term prediction of significant wave height</title><source>Elsevier ScienceDirect Journals</source><creator>Scotto, M.G. ; Guedes Soares, C.</creator><creatorcontrib>Scotto, M.G. ; Guedes Soares, C.</creatorcontrib><description>This paper considers the problem of estimating long-term predictions of significant wave-height. A method which combines Bayesian methodology and extreme value techniques is adopted. Inferences are based on the Metropolis–Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo scheme. The method is applied to obtain return values of extreme values of significant wave height collected on the northern North Sea. The results are compared with those obtained by Guedes Soares and Scotto [Guedes Soares, C. and Scotto, M.G., 2004. Application of the r-order statistics for long-term predictions of significant wave heights.
Coastal Engineering, 51, 387–394].</description><identifier>ISSN: 0378-3839</identifier><identifier>EISSN: 1872-7379</identifier><identifier>DOI: 10.1016/j.coastaleng.2006.11.003</identifier><identifier>CODEN: COENDE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bayesian inference ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Extreme value models ; Geomorphology, landform evolution ; Marine ; Marine and continental quaternary ; Markov Chain Monte Carlo ; Return value ; Sea-levels ; Surficial geology</subject><ispartof>Coastal engineering (Amsterdam), 2007-05, Vol.54 (5), p.393-400</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-ec0d2b5e8d46a4338a6f448a33c0011d385c9bbab46e02b6c4acbb66c3d16d4f3</citedby><cites>FETCH-LOGICAL-c445t-ec0d2b5e8d46a4338a6f448a33c0011d385c9bbab46e02b6c4acbb66c3d16d4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378383906001876$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18727849$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scotto, M.G.</creatorcontrib><creatorcontrib>Guedes Soares, C.</creatorcontrib><title>Bayesian inference for long-term prediction of significant wave height</title><title>Coastal engineering (Amsterdam)</title><description>This paper considers the problem of estimating long-term predictions of significant wave-height. A method which combines Bayesian methodology and extreme value techniques is adopted. Inferences are based on the Metropolis–Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo scheme. The method is applied to obtain return values of extreme values of significant wave height collected on the northern North Sea. The results are compared with those obtained by Guedes Soares and Scotto [Guedes Soares, C. and Scotto, M.G., 2004. Application of the r-order statistics for long-term predictions of significant wave heights.
Coastal Engineering, 51, 387–394].</description><subject>Bayesian inference</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Extreme value models</subject><subject>Geomorphology, landform evolution</subject><subject>Marine</subject><subject>Marine and continental quaternary</subject><subject>Markov Chain Monte Carlo</subject><subject>Return value</subject><subject>Sea-levels</subject><subject>Surficial geology</subject><issn>0378-3839</issn><issn>1872-7379</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwH7zAlmDHruOOgPiSkFhgti6Xc3GV2sUOIP49qYrEyC23PO-9uocxLkUthTSX6xoTlBEGiqu6EcLUUtZCqAM2k7Ztqla1y0M2E6q1lbJqecxOSlmLaYxdzNjdNXxTCRB5iJ4yRSTuU-ZDiqtqpLzh20x9wDGkyJPnJaxi8AEhjvwLPom_UVi9jafsyMNQ6Ox3z9nr3e3LzUP19Hz_eHP1VKHWi7EiFH3TLcj22oBWyoLxWltQCoWQsld2gcuug04bEk1nUAN2nTGoeml67dWcXezvbnN6_6Ayuk0oSMMAkdJHcY3QolVaTKDdg5hTKZm82-awgfztpHA7cW7t_sS5nTgnpZvETdHz3w4oCIPPEDGUv_xktbV6OXHXe46mhz8DZVcw7AT2IROOrk_h_7IfJTWKBA</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Scotto, M.G.</creator><creator>Guedes Soares, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20070501</creationdate><title>Bayesian inference for long-term prediction of significant wave height</title><author>Scotto, M.G. ; Guedes Soares, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-ec0d2b5e8d46a4338a6f448a33c0011d385c9bbab46e02b6c4acbb66c3d16d4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian inference</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Extreme value models</topic><topic>Geomorphology, landform evolution</topic><topic>Marine</topic><topic>Marine and continental quaternary</topic><topic>Markov Chain Monte Carlo</topic><topic>Return value</topic><topic>Sea-levels</topic><topic>Surficial geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scotto, M.G.</creatorcontrib><creatorcontrib>Guedes Soares, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Coastal engineering (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scotto, M.G.</au><au>Guedes Soares, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference for long-term prediction of significant wave height</atitle><jtitle>Coastal engineering (Amsterdam)</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>54</volume><issue>5</issue><spage>393</spage><epage>400</epage><pages>393-400</pages><issn>0378-3839</issn><eissn>1872-7379</eissn><coden>COENDE</coden><abstract>This paper considers the problem of estimating long-term predictions of significant wave-height. A method which combines Bayesian methodology and extreme value techniques is adopted. Inferences are based on the Metropolis–Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo scheme. The method is applied to obtain return values of extreme values of significant wave height collected on the northern North Sea. The results are compared with those obtained by Guedes Soares and Scotto [Guedes Soares, C. and Scotto, M.G., 2004. Application of the r-order statistics for long-term predictions of significant wave heights.
Coastal Engineering, 51, 387–394].</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.coastaleng.2006.11.003</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-3839 |
ispartof | Coastal engineering (Amsterdam), 2007-05, Vol.54 (5), p.393-400 |
issn | 0378-3839 1872-7379 |
language | eng |
recordid | cdi_proquest_miscellaneous_20407340 |
source | Elsevier ScienceDirect Journals |
subjects | Bayesian inference Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Engineering geology Exact sciences and technology Extreme value models Geomorphology, landform evolution Marine Marine and continental quaternary Markov Chain Monte Carlo Return value Sea-levels Surficial geology |
title | Bayesian inference for long-term prediction of significant wave height |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20for%20long-term%20prediction%20of%20significant%20wave%20height&rft.jtitle=Coastal%20engineering%20(Amsterdam)&rft.au=Scotto,%20M.G.&rft.date=2007-05-01&rft.volume=54&rft.issue=5&rft.spage=393&rft.epage=400&rft.pages=393-400&rft.issn=0378-3839&rft.eissn=1872-7379&rft.coden=COENDE&rft_id=info:doi/10.1016/j.coastaleng.2006.11.003&rft_dat=%3Cproquest_cross%3E20407340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20407340&rft_id=info:pmid/&rft_els_id=S0378383906001876&rfr_iscdi=true |