Bayesian inference for long-term prediction of significant wave height

This paper considers the problem of estimating long-term predictions of significant wave-height. A method which combines Bayesian methodology and extreme value techniques is adopted. Inferences are based on the Metropolis–Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo sche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coastal engineering (Amsterdam) 2007-05, Vol.54 (5), p.393-400
Hauptverfasser: Scotto, M.G., Guedes Soares, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the problem of estimating long-term predictions of significant wave-height. A method which combines Bayesian methodology and extreme value techniques is adopted. Inferences are based on the Metropolis–Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo scheme. The method is applied to obtain return values of extreme values of significant wave height collected on the northern North Sea. The results are compared with those obtained by Guedes Soares and Scotto [Guedes Soares, C. and Scotto, M.G., 2004. Application of the r-order statistics for long-term predictions of significant wave heights. Coastal Engineering, 51, 387–394].
ISSN:0378-3839
1872-7379
DOI:10.1016/j.coastaleng.2006.11.003