An inverse design approach for minimising wake at propeller plane using CFD
Knowledge of wake characteristics in the stern region is important for ensuring good propeller design and performance. This work examines the utility of CFD in the analysis of flow in the case of full aft beam vessels having characteristic cut stern shape to facilitate propeller aperture. The underw...
Gespeichert in:
Veröffentlicht in: | Ocean engineering 2006-02, Vol.33 (2), p.119-136 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Knowledge of wake characteristics in the stern region is important for ensuring good propeller design and performance. This work examines the utility of CFD in the analysis of flow in the case of full aft beam vessels having characteristic cut stern shape to facilitate propeller aperture. The underwater stern shape may be more complex due to the occurrence of stern appendages such as bossings, strut supports and local shape variations. To this extent, CFD offers an effective tool for both qualitative as well as quantitative assessment of the local geometry. Wake estimate is required for choice of the most favorable propeller geometry. In the present method, the analysis quantifies the effects of small changes in stern rake angles and offers an inverse design approach towards finalising the stern shape. The method consists of solving the standard
k–
ε turbulent model of RANS equations in cell centered finite volume multi zone grid in the flow domain. This approach has been used in estimating the velocity at the propeller plane. The results have been compared with experimentally obtained values of nominal wake. The approach suggests that CFD can provide a cost effective and quick assessment of flow. It is also an attractive means of pre-empting heterogeneous flow related problems such as vibration and noise due to unfavorable wake in the stern region. |
---|---|
ISSN: | 0029-8018 1873-5258 |
DOI: | 10.1016/j.oceaneng.2005.04.014 |