Mating System in the Brown Rot Pathogens Monilinia fructicola, M. laxa, and M. fructigena
Monilinia fructicola, M. laxa, and M. fructigena are the most important pathogens responsible for brown rot disease of stone and pome fruits. Information on their mating system and sexual behavior is scant. A mating-type-specific PCR-based assay was developed and applied to 155 Monilinia isolates fr...
Gespeichert in:
Veröffentlicht in: | Phytopathology 2018-11, Vol.108 (11), p.1315-1325 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Monilinia fructicola, M. laxa, and M. fructigena are the most important pathogens responsible for brown rot disease of stone and pome fruits. Information on their mating system and sexual behavior is scant. A mating-type-specific PCR-based assay was developed and applied to 155 Monilinia isolates from 10 countries and 10 different host plants. We showed that single isolates carry only one of two opposite idiomorphs at the MAT1 locus consistent with a heterothallic mating system for all three species. MAT1-1 and MAT1-2 mating types were detected in similar proportions in samples of isolates of each species and hence there do not appear to be genetic obstacles to the occurrence of sexual reproduction in their populations. Inter simple sequence repeat markers suggested that asexual reproduction is prevalent, but that sexual recombination occurs in M. fructicola populations in Italy. The genetic architectures of the MAT1 loci of the three pathogens were analyzed. MAT1-1 and MAT1-2 idiomorphs are flanked upstream and downstream by the APN2 and SLA2 genes and resemble those of Botrytis cinerea and other heterothallic fungi in the family Sclerotiniaceae. Each idiomorph contains a specific couple of genes, MAT1-1-1 (with alpha-box domain) and MAT1-1-5 in MAT1-1, and MAT1-2-1 (with HMG-box domain) and MAT1-2-10 in MAT1-2. Small gene fragments (dMAT1-1-1 and dMAT1-2-1) from the opposite idiomorph were detected close to their flanking regions. Constitutive expression of the four MAT1 genes during vegetative growth was ascertained by transcriptomic analysis (RNA-Seq). Antisense transcription of the MAT1-1-1 and MAT1-2-1 genes and intergenic transcribed regions of the MAT1 locus were detected. These results represent new insights into the mating systems of these three economically-important pathogens which could contribute to improve the knowledge on their population biology. |
---|---|
ISSN: | 0031-949X 1943-7684 |
DOI: | 10.1094/PHYTO-03-18-0074-R |