Determination of the dialdehyde glyoxal in workroom air-development of personal sampling methodology

The dialdehyde glyoxal (ethanedial) is an increasingly used industrial chemical with potential occupational health risks. This study describes the development of a personal sampling methodology for the determination of glyoxal in workroom air. Among the compounds evaluated as derivatizing agents; N-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental monitoring 2007-07, Vol.9 (7), p.687-694
Hauptverfasser: Olsen, Raymond, Thorud, Syvert, Hersson, Merete, Ovrebø, Steinar, Lundanes, Elsa, Greibrokk, Tyge, Ellingsen, Dag G, Thomassen, Yngvar, Molander, Paal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dialdehyde glyoxal (ethanedial) is an increasingly used industrial chemical with potential occupational health risks. This study describes the development of a personal sampling methodology for the determination of glyoxal in workroom air. Among the compounds evaluated as derivatizing agents; N-methyl-4-hydrazino-7-nitrobenzofurazan (MNBDH), 1,2-phenylenediamine (OPDA), 1-dimethylaminonaphthalene-5-sulfonylhydrazine (dansylhydrazine, DNSH) and 2,4-dinitrophenylhydrazine (DNPH), DNPH was the only reagent that was suitable. Several different samplers were evaluated for sampling efficiency of glyoxal in workroom air using DNPH as derivatizing agent; in-house DNPH coated silica particles packed in two different types of glass tubes, impingers containing acidified DNPH solution, filter cassettes containing glass fibre filters coated with DNPH, a commercially available solid phase cartridge sampler originally developed for formaldehyde sampling (Waters Sep-Pak DNPH-silica cartridge), and the commercially available SKC UMEx 100 passive sampler originally developed for formaldehyde sampling. Aldehyde atmospheres for sampler evaluation were generated with an in-house made vapour atmosphere generator coupled to a sampling unit, with the possibility of parallel sampling. The resulting glyoxal-DNPH derivative was determined using both LC-UV and LC-APCI-MS with negative ionization. By far, the highest recovery of glyoxal was obtained employing one of the in-house DNPH coated silica samplers (93%, RSD = 3.6%, n = 12).
ISSN:1464-0325
1464-0333
DOI:10.1039/b700105n