Dynamics of fipronil residue in vegetable-field ecosystem
Fipronil insecticide has been widely used to control vegetable pests in China recently. The research was conducted to evaluate the fate of fipronil in vegetable-field ecosystem and provide the scientific basis of using this insecticide. Developed on the analytical methods of fipronil residue and its...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2004-12, Vol.57 (11), p.1691-1696 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fipronil insecticide has been widely used to control vegetable pests in China recently. The research was conducted to evaluate the fate of fipronil in vegetable-field ecosystem and provide the scientific basis of using this insecticide. Developed on the analytical methods of fipronil residue and its four metabolisms, the degradation dynamics of their residue in a vegetable and the soil of the vegetable fields was studied. The results showed that (1) degradation of fipronil was faster in pakchoi (half-life 2.6 days) than in soil (half-life 7.3 days); (2) degradation reaction occurred in soil was governed mainly by photodegradation and oxidization accompanying with production of the metabolites, MB46513 and MB46136. Reduction and hydrolyzation played little role in the degradation process. In pakchoi, degradation was mainly contributed by reduction though oxidization and hydrolyzation occurred simultaneously. The metabolite products were MB45950, MB46136 and RPA200766; (3) the final residue in pakchoi was at a level of 0.003 mg
kg
−1, which was much lower than the USA’s upper limit of 0.04 mg
kg
−1 in rice. Therefore, a dosage of 24 g
hm
−2 was suggested and considered as safe to human beings and animals. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2004.06.025 |